What does a 10 cm s⁻¹ shift in velocity look like?

TEM image of silicon wafer lattice (typical CCD)
What does a 10 cm s\(^{-1}\) shift in velocity look like?

TEM image of silicon wafer lattice (typical CCD)
What does a 10 cm s\(^{-1}\) shift in velocity look like?

TEM image of silicon wafer lattice (typical CCD)
Deconstructing measurement precision
Deconstructing measurement precision
Deconstructing measurement precision

Radial Velocity [cm s$^{-1}$] vs Orbital phase

σ_{RV}
Deconstructing measurement precision

\[\sigma_{RV} = \sigma_{\text{photon}} + \sigma_{\text{facility}} + \sigma_{\text{jitter}} \]
Deconstructing measurement precision

\[\sigma_{\text{RV}} = \sigma_{\text{photon}} + \sigma_{\text{facility}} + \sigma_{\text{jitter}} \]

- Aperture
- Efficiency
- Information content
Deconstructing measurement precision

- Aperture
- Efficiency
- Information content

σ_{RV}

σ_{photon}

σ_{facility}

σ_{jitter}

KPF system efficiency model

Throughput vs. Wavelength [nm]
Deconstructing measurement precision

\[\sigma_{\text{RV}} \]

\[\sigma_{\text{photon}} \] \hspace{1cm} \sigma_{\text{facility}} \hspace{1cm} \sigma_{\text{jitter}} \]

Aperture
Efficiency
Information content

e.g. Bouchy+ 2001, Halverson+ 2016, Gibson+ 2018
Deconstructing measurement precision

\[\sigma_{RV} \]

\[\sigma_{\text{photon}} \]

\[\sigma_{\text{facility}} \]

\[\sigma_{\text{jitter}} \]

Aperture

Efficiency

Information content

SNR \sim 500
Deconstructing measurement precision

\[\sigma_{RV} \]

\[\sigma_{photon} \]

\[\sigma_{facility} \]

\[\sigma_{jitter} \]

Instrumental stability

Calibration ability

External errors, analysis

e.g. Avila+ 2008, Sturmer+ 2014, Halverson & Roy+ 2015
Deconstructing measurement precision

- σ_{RV}
- σ_{photon}
- σ_{facility}
- σ_{jitter}

Instrumental stability
Calibration ability
External errors, analysis

Sky fiber (A)
Calibration source (B)
Starlight (C)
Deconstructing measurement precision

\[\sigma_{RV} \]

- \(\sigma_{\text{photon}} \)
- \(\sigma_{\text{facility}} \)
- \(\sigma_{\text{jitter}} \)

Instrumental stability
Calibration ability
External errors, analysis

Graph: Differential drift (cm s\(^{-1}\)) vs. Time (hour)

\(\sigma_{A-B} = 26 \text{ cm s}^{-1} \)
Deconstructing measurement precision

- σ_{RV}
- σ_{photon}
- σ_{facility}
- σ_{jitter}

Instrumental stability
Calibration ability
External errors, analysis

Spectrum
Mask
CCF
Deconstructing measurement precision

\[\sigma_{RV} \]

\[\sigma_{\text{photon}} \]

\[\sigma_{\text{facility}} \]

\[\sigma_{\text{jitter}} \]

Instrumental stability

Calibration ability

External errors, analysis

Roy+ 2018
Deconstructing measurement precision

Total NEID instrumental error budget: 27.0 cm s\(^{-1}\)

Instrument (uncalibratable): 15.1 cm s\(^{-1}\) (30.6%)
- Fiber & illumination: 8.7 cm s\(^{-1}\)
 - Calibration source modal noise: 2.5 cm s\(^{-1}\)
 - Continuum modal noise: 2.5 cm s\(^{-1}\)
 - Near-field scrambling: 3.5 cm s\(^{-1}\)
 - Far-field scrambling: 5.0 cm s\(^{-1}\)
 - Stray light: 5.0 cm s\(^{-1}\)
 - Polarization: 2.0 cm s\(^{-1}\)

Instrument (calibratable): 11.2 cm s\(^{-1}\) (11.1%)
- Thermo-mechanical: 7.8 cm s\(^{-1}\)
 - Thermal stability (grating): 3.5 cm s\(^{-1}\)
 - Thermal stability (cross-disp): 3.0 cm s\(^{-1}\)
 - Thermal stability (bench): 3.0 cm s\(^{-1}\)
 - Vibrational stability: 2.0 cm s\(^{-1}\)

Calibration source (uncalibratable): 11.5 cm s\(^{-1}\) (18.7%)
- Calibration accuracy: 5.7 cm s\(^{-1}\)
 - Stability: 4.0 cm s\(^{-1}\)
 - Photon noise: 4.0 cm s\(^{-1}\)

External errors (uncalibratable): 18.7 cm s\(^{-1}\) (49.6%)
- Calibration process: 10 cm s\(^{-1}\)
Deconstructing measurement precision

\[\sigma_{RV} \]

\[\sigma_{\text{photon}} \quad \sigma_{\text{facility}} \quad \sigma_{\text{jitter}} \]

estimated \(\sigma_{\text{jitter, Sun}} \)

Marchwinski et al. 2015
Now in the era where no single source of instrumental noise dominates.
Now in the era where no single source of instrumental noise dominates.

Total NEID instrumental error budget: 27.0 cm s⁻¹

<table>
<thead>
<tr>
<th>Instrument (uncalibratable): 15.1 cm s⁻¹ (30.6%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiber & illumination: 8.7 cm s⁻¹</td>
</tr>
<tr>
<td>Calibration source modal noise: 2.5 cm s⁻¹</td>
</tr>
<tr>
<td>Continuum modal noise: 2.5 cm s⁻¹</td>
</tr>
<tr>
<td>Near-field scrambling: 3.5 cm s⁻¹</td>
</tr>
<tr>
<td>Far-field scrambling: 5.0 cm s⁻¹</td>
</tr>
<tr>
<td>Stray light: 4.0 cm s⁻¹</td>
</tr>
<tr>
<td>Polarization: 2.0 cm s⁻¹</td>
</tr>
<tr>
<td>Detector effects: 7.1 cm s⁻¹</td>
</tr>
<tr>
<td>Readout thermal change: 5.0 cm s⁻¹</td>
</tr>
<tr>
<td>Charge transfer inefficiency: 5.0 cm s⁻¹</td>
</tr>
<tr>
<td>Barycentric correction: 1.7 cm s⁻¹</td>
</tr>
<tr>
<td>Algorithms: 1.0 cm s⁻¹</td>
</tr>
<tr>
<td>Exposure midpoint time: 1.0 cm s⁻¹</td>
</tr>
<tr>
<td>Coordinates and proper motion: 1.0 cm s⁻¹</td>
</tr>
<tr>
<td>Reduction pipeline: 10 cm s⁻¹</td>
</tr>
<tr>
<td>Software algorithms: 10 cm s⁻¹</td>
</tr>
<tr>
<td>Instrument (calibratable): 11.2 cm s⁻¹ (1.1%)</td>
</tr>
<tr>
<td>Thermo-mechanical: 7.8 cm s⁻¹</td>
</tr>
<tr>
<td>Thermal stability (grating): 3.5 cm s⁻¹</td>
</tr>
<tr>
<td>Thermal stability (cross dispa.): 3.0 cm s⁻¹</td>
</tr>
<tr>
<td>Thermal stability (bench): 3.0 cm s⁻¹</td>
</tr>
<tr>
<td>Vibrational stability: 2.0 cm s⁻¹</td>
</tr>
<tr>
<td>Pressure stability: <0.1 cm s⁻¹</td>
</tr>
<tr>
<td>LN2 fill transient: 1.0 cm s⁻¹</td>
</tr>
<tr>
<td>Zerodur phase change: 5.0 cm s⁻¹</td>
</tr>
<tr>
<td>Detector effects: 8.1 cm s⁻¹</td>
</tr>
<tr>
<td>Pixel inhomogeneities: 1.0 cm s⁻¹</td>
</tr>
<tr>
<td>Electronics noise: 1.0 cm s⁻¹</td>
</tr>
<tr>
<td>Stitching error: 3.0 cm s⁻¹</td>
</tr>
<tr>
<td>CCD thermal expansion: 2.0 cm s⁻¹</td>
</tr>
<tr>
<td>Readout thermal change: 5.0 cm s⁻¹</td>
</tr>
<tr>
<td>Charge transfer inefficiency: 5.0 cm s⁻¹</td>
</tr>
</tbody>
</table>

Calibration source (uncalibratable): 11.5 cm s⁻¹ (18.7%)

| Calibration accuracy: 5.7 cm s⁻¹ |
| Stability: 4.0 cm s⁻¹ |
| Photon noise: 6.9 cm s⁻¹ |

External errors (uncalibratable): 18.7 cm s⁻¹ (49.6%)

| Calibration process: 10 cm s⁻¹ |
| Software algorithms: 10 cm s⁻¹ |

Telescope: 12.2 cm s⁻¹

| Guiding: scrambling |
| ADC: 6.9 cm s⁻¹ |
| Focus: 5.0 cm s⁻¹ |
| Windshake: 8.0 cm s⁻¹ |

Atmospheric effects: 14.1 cm s⁻¹

| Micro-telluric contamination: 10 cm s⁻¹ |
| Sky fiber subtraction: 10 cm s⁻¹ |
Now in the era where no single source of instrumental noise dominates
Calibratable error examples

From telescope

White Light

Echelle Grating

Dispersed Light

To cross-disperser

800 mm
Thermal fluctuations on spectrometer optics

\[\Delta v = \alpha_L c \Delta T, \]

\[\Delta T = 10 \text{ mK} \]

\[\Delta v = 15 \text{ cm s}^{-1} \]
Thermal fluctuations on spectrometer optics

KPF green / red cameras

Camera optical elements have measurable dn/dT, CTE
Thermal fluctuations on spectrometer optics

KPF green / red cameras

Camera optical elements have measurable dn/dT, CTE
Thermal fluctuations on spectrometer optics

KPF green / red cameras

Camera optical elements have measurable dn/dT, CTE
Examples of errors *not* tracked by calibration source

- Fundamentally, spectrometer records monochromatic images of entrance aperture

Spectrometer line profile

'Spectral' domain

Entrance slit

'Spatial' domain

6 km s\(^{-1}\)
Spectrometer PSF

Telescope pupil

Beam profile on grating, camera optics sets the aberration distribution, final PSF
Far-field variations impacting RV measurement performance

e.g. Stuermer + 2014, Halverson + 2016
Pupil variation within spectrometer lead to changes in effective aberrations.

1” shift on fiber face (near-field)

Near-field input Far-field output

Input pupil shift (far-field)

Input pupil
Detector effects: Charge transfer *inefficiency*

Parallel transfer direction

Serial transfer direction

Serial transfer CTI (shifting and blurring of absorption features in the dispersion direction)

Parallel transfer CTI (shifting and blurring of orders in cross-dispersion direction)

Incident spectrum (pre-readout)

1-D extracted spectrum

Bouchy+ 2009, Blake+ 2017, Halverson+ 2018
CCD fringing can introduce systematic error

Example CCD flat, showing clear fringing structure

~1 m s$^{-1}$ precision not demonstrated at reddest (>800 nm) wavelengths on CCDs

Slide credit: Arpita Roy
The atmosphere contributes more than telluric absorption
You are only as precise as your calibration source
e.g. Bouchy+ 2001, Murphy+ 2007, Halverson+ 2014
Pushing to 10 cm s\(^{-1}\) will unveil a forest of new challenges

Total NEID instrumental error budget: 27.0 cm s\(^{-1}\)