## Nb3Sn coils: impregnation at CERN

### Sandra Tavares

<u>Acknowledgements</u>: Jerome Axensalva, Ahmed Benfkih, Sebastien Clement, Beatriz Del Valle, Remy Gauthier, Romain Gavaggio, Friedrich Lackner, Frederic Savary

Workshop on Nb<sub>3</sub>Sn technology for accelerator magnets Paris, 11-12 October 2018



## **Outline**

- 1. Introduction
- 2. Nb<sub>3</sub>Sn coils impregnated at CERN
- 3. Impregnation facilities
- 4. Impregnation process
- 5. Resin system: CTD 101K
- 6. Baseline and challenges
- 7. Work in progress



## 1. Introduction









SMC

# 2. Nb<sub>3</sub>Sn coils impregnated at CERN

## Impregnation of model coils

Polymer lab: +60 impregnated Nb<sub>3</sub>Sn coils over the past 6 years

| Coil           | #  |
|----------------|----|
| 11T Dipole     | 19 |
| MQXFS          | 24 |
| FReSCa2        | 6  |
| SMC 11T Dipole | 5  |
| RMC FReSCa2    | 4  |
| RMC MQXF       | 2  |
| E-RMC          | 1  |





# 2. Nb<sub>3</sub>Sn coils impregnated at CERN (cont.)

## Impregnation of model coils

Polymer lab: +40 impregnations of 11T Dipole and MQXFS coils





# 2. Nb<sub>3</sub>Sn coils impregnated at CERN (cont.)

## Impregnation of prototype and series coils

LMF @180: ~20 impregnated Nb<sub>3</sub>Sn coils (including 2 model coils 11T Dipole)

| Practice coils | # |
|----------------|---|
| 11T Dipole     | 2 |
| MQXFB          | 3 |

| Prototype coils | # |
|-----------------|---|
| 11T Dipole      | 5 |
| MQXFB           | 5 |

| Series     | # |
|------------|---|
| 11T Dipole | 3 |
| MQXFB      | 0 |





# 3. Impregnation Facilities

**TE/MSC-MDT, Polymer laboratory (@927):** Model coils up to 2m



TE/MSC-LMF (@180):
Prototype and Series coils up to 7.5m





# 4. Impregnation process

## **Preparation for impregnation**

Coil inside the mould

#### RT tests:

- Leak tightness
- Obstruction
- Pressure hold

Mould inside chamber, connect heating system, purge with N<sub>2</sub>

#### 80°C/110°C tests

- Leak tightness
- Obstruction
- Pressure hold

Pumping of vacuum chamber & mould bakeout

#### Leak tightness:

 the mould is pumped at RT. The vacuum lost after 10 minutes should be less then 100 mbar.

### Major obstruction:

- Mould pumped at RT; time to recover atmospheric pressure:
   <10s (varies with coil)</li>
- N<sub>2</sub> is injected at resin inlet. N<sub>2</sub> shall flow out at resin outlet.

### Pressure hold (11T Dipole):

Inject N<sub>2</sub> up to nearly 2 bars. Pressure shall hold for 10 min.







## **Preparation for impregnation**

Coil inside the mould

#### RT tests:

- Leak tightness
- Obstruction
- Pressure hold

Mould inside chamber, connect heating system, purge with N<sub>2</sub>

#### 80°C/110°C tests.

- Leak tightness
- Obstruction
- Pressure hold

Pumping of vacuum chamber and mould bakeout

#### Telstar machine:

- 1. Place mould on the tray
- 2. Tilt tray to 12 degrees
- 3.N<sub>2</sub> mould purge for 3h











## **Preparation for impregnation**

Pumping of vacuum chamber & mould bakeout

Ok for resin mixing and degassing

Pirani sensor connected to injection channel and monitored during bakeout



Criteria for impregnation:

P<sub>chamber</sub> ~3x10<sup>-3</sup> mbar

 $P_{\text{mould}} \sim 3x10^{-1} \text{ mbar}$ 

4-5 days of mould bakeout



## **Impregnation**

Pumping of vacuum chamber & mould bakeout

Resin mix and degassing

Resin injection

Vacuumpressure cycle
and/or apply
pressure

Curing cycle

Impregnated coil

Mixing tank



- 1. Transfer of premixed resin to the mixing unit with peristaltic pump
- 2. Resin mix is heated to 60°C and degassed under agitation
- 3. Resin degassed to a lower pressure level than mould: ~9x10<sup>-2</sup> mbar
- 4. Mixing tank pressure increased to 400mbar, to inject the resin through the flowmeter and into the mould

11T Dipole mandrel with channels for resin injection along coil length:





## **Impregnation**

Pumping of vacuum chamber & mould bakeout

Resin mix and degassing

Resin injection

Vacuumpressure cycle and/or apply pressure

Curing cycle

Impregnated coil

At the end of the impregnation:

- Increase mixing tank pressure 1 bar to force the resin into the mold and release voids
- 2. Break and restart the vacuum for 3 hours to complete wetting of fibre glass and drive out voids
- 3. Apply 2 bars of pressure onto resin of impregnated coil (@927 only for 11T Dipole)







# 5. Resin system: CTD 101K

Three component system formulated for long pot life:

Resin: Bisphenol A diglycidyl ether (DGEBA) epoxy

Hardener: anhydride

Accelerator: amine

| Temp. (°C) | Pot life (h) | Viscosity (mPa⋅s) |
|------------|--------------|-------------------|
| 25         | 145          | 1300              |
| 40         | 60           | 400               |
| 60         | 20           | 100               |



CTD-101K Viscosity Profile at 60°C and at 40°C

Data from CTD, Composite Technology Development Inc.



# 5. Resin system: CTD 101K (cont.)



Resin glass transition temperature  $(T_g)$  as a function of cure cycle. (Expressed as DMA tan  $\delta$ ).

Data from CTD, Composite Technology Development Inc.

Measured by the Polymer lab with DSC:

Tg average = 
$$121 \pm 2^{\circ}C$$
 ( $1\sigma$ )





# 5. Resin system: CTD 101K (cont.)

### Mechanical properties at 77K of laminates with S2 Glass, vf= 50%





CTD 101K: DGEBA epoxy

CTD 422: Cyanate ester/Biyphenol A epoxy 60:40

CTD 403: Cyanate ester

#### Irradiation conditions:

- TRIGA reactor at ATI (Vienna)
- 80% gamma, 20% neutron
- 340 K irradiation temperature

IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 27, NO. 4, JUNE 2017



# 5. Resin system: CTD 101K (cont.)

Fracture toughness of CTD 101K at 77K, laminate with S2 Glass, vf= 50%



Fracture toughness of CTD 101K at 77K, laminate with S2 Glass, vf= 50%

Data from CTD 101K technical datasheet, irradiation conditions unknown



## 6. Baseline and challenges

### **HL-LHC:** inherited insulation scheme from US LARP

- Resin: CTD 101K
- Glass fibre S2
- Binder for winding: CTD 1202
- Mica tape (11T Dipole)
- Heat treatment reaction cycle

This insulation system works, but can be improved, e.g.

- Carbon remaining from the binder degradation with the reaction cycle
- Glass fibre degradation with reaction cycle
- Brittleness of resin contributing to magnet training



## 7. Work in progress

### Radiation program at QST Takasaki (JP)

### **KEK collaboration**

#### Materials selection

#### **VPI resins**

- Bisphenol A epoxy CTD 101K
- · DGEBA epoxy Araldite F
- DGEBA epoxy Damisol 3418
- DCBE cyanate ester/Bisphenol F & Bisphenol A epoxy 40:60 - CTD 425
- Polyesterimide Damisol 3340

#### **Glass fibres**

· S2 glass 493 66 Tex fibres

#### Hot press composites

#### For Decapole Spacers & wedges (INFN & KEK)

- Bismaleimide triazine BTS2 (S2 glass fibres)
- Polyetherimide Duratron (E glass fibres)

#### Irradiation facility selection

| Gamma-ray<br>irradiation  | QST Takasaki Lab<br>(Japan)    |
|---------------------------|--------------------------------|
| Fixed Box [cm³]           | 40x30x100                      |
| Irradiation dose<br>[MGy] | 0-100                          |
| Dose rate [kGy/h]         | 10                             |
| Atmosphere                | Air                            |
| Temperature               | RT                             |
| ESTIMATED cost (€)        | ~ 1000<br>("competitive fund") |

QST Takasaki conditions:

- KEK collaboration
- Publish results



#### Estimated Irradiation time (days) Space A 10 MGy 30 MGv 100 MGv (125 mm < Z < 225 mm)(42d)(125d)(407d) Space B 20MGy 50 MGy 40 MGy (225 mm < Z < 325 mm)(209d)(84d) (167d)

JFY2018 (365 d)

#### Characterization tests

#### Mechanical properties

Interlaminar shear strength (ASTM D2344) Flexural strength (ISO 178)

CERN, EN-MME-MM

Charpy impact properties (ISO 179) — LTA, Laboratoire de Technologie Avancée (Geneva)

#### Chemical / polymer properties

Tg, Heat flow (DSC, IEC 61006) —— CERN, TE-VSC-SCC





Test temperature: RT, 77K



JFY2019 (365 d)

# Thank you for your attention

