Measuring in-plane displacement and strain fields with the grid method. A feasibility study on superconducting magnet

C. Badulescu¹, B. Blaysat², M. Grédiac²

¹Institut de Recherche Dupuy de Lôme ENSTA Bretagne, Brest, France

²Institut Pascal

Université Clermont Auvergne, Clermont-Ferrand, France

Paris, October 11th, 2018

Objective:

- measuring displacement and strain fields on a superconducting magnet specimen subjected to a mechanical loading
- applying a suitable full-field measurement technique: the grid method
- are the heterogeneities due to the heterogeneous nature of the material observable?

Objective:

- measuring displacement and strain fields on a superconducting magnet specimen subjected to a mechanical loading
- applying a suitable full-field measurement technique: the grid method
- are the heterogeneities due to the heterogeneous nature of the material observable?

Outline:

- 1- Basics on the grid method
- 2- Preparation of the specimen
- 3- How to extract displacement/strain fields from the images?
- 4- Results
- 5- Conclusion

Outline

1- Basics on the grid method

- 2- Preparation of the specimen
- 3- How to extract displacement/strain fields from the images?
- 4- Results
- 5- Conclusion

- 1- Grid bonded/engraved/transferred on the specimen
- 2- Image of the grid captured by a camera before and after loading
- 3- Displacement and strain fields deduced by processing these images

- 1- Speckle deposited on the specimen
- 2- Image of the speckled pattern captured by a camera before and after loading
- 3- Displacement and strain fields deduced by processing these images

a $p \bigcirc$ knowledge on the pattern with grid \rightarrow better compromise between noise level and spatial resolution with grids than with speckles [1]

price to pay: depositing a regular marking

[1] M. Grédiac, F. Sur, B. Blaysat, Experimental Mechanics, 57(3): 871-903, 2017

Outline

1- Basics on the grid method

2- Preparation of the specimen

- 3- How to extract displacement/strain fields from the images?
- 4- Results
- 5- Conclusion

Step 1:

- cutting the specimen in a superconducting magnet
- polishing the surface of the specimen

Specimen:

- selected and thoroughly polished and prepared by François NUNIO, CEA Paris-Saclay, France

- cable from JLab magnet for CLS12 torus magnet

dimensions: 60x35x10 mm³

Step 2:

- bonding tabs onto the specimen, suitable for an ARCAN fixture

- adjusting the thickness of the glue (200 mm) with slip gauges
- polymerisation: 5 hours, 80° C

Step 3:

- transferring a 2D grid onto the specimen

- grid printed on the polymeric sheet with a high-resolution photoplotter (64,000 dpi)

- white epoxy adhesive to ensure a good visual contrast with black inck

Step 4:

- mounting the specimen in an Arcan fixture + testing it

Arcan fixture + specimen

Step 4:

- mounting the specimen in an Arcan fixture + testing it

Arcan fixture + specimen

Various (potential) 2D loading configurations with the Arcan fixture

Π

I-I \rightarrow compression + shear II-II \rightarrow shear III-III \rightarrow tensile load + shear IV-IV \rightarrow tensile load

Tested configurations

Outline

- 1- Basics on the grid method
- 2- Preparation of the specimen

3- How to extract displacement/strain fields from the images?

- 4- Results
- 5- Conclusion

Link between displacement and phase [1] :

Displacement proportional to the change in phase

$$\rightarrow u = -\frac{p}{2\pi} (\Phi_{\text{current}} - \Phi_{\text{reference}}) = -\frac{p}{2\pi} \Delta \Phi$$

[1] Y. Surrel, Topics in Applied Physics, 2000

Case of 2D-grids:

2D grids \rightarrow 2 displacements u_x and u_y

Extracting the phases from the images

- by using a Fourier-based method such as:
 - the Geometric Phase Analysis [1] (the whole spectrum)
 - the windowed Geometric Phase Analysis [2] (windows in the spectrum)
 - the Localized Spectrum Analysis, LSA [3] (points in the spectrum)

• LSA:

$$\widehat{s}(x, y, f, 0, \alpha) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{s(u, v)} \underline{g(x - u, y - v)} e^{-2i\pi f u(\cos\alpha + f v \sin\alpha)} du dv$$

with:

1. s(u,v): signal = matrix of gray levels

2. g(x-u, y-v): Gaussian window

[1] M. J. Hytch, E. Snoeck, R. Kilaas, Ultramicroscopy, 74:131-146, 1998
[2] X. Dai, H. Xie, H. Wang, Optics and Laser Technology, 58(6):119-127, 2014
[3] M. Grédiac, F. Sur, B. Blaysat, Strain, 52(3):205--243, 2016

Extracting the phases from the images

- by using a Fourier-based method such as:
 - the Geometric Phase Analysis [1] (the whole spectrum)
 - the windowed Geometric Phase Analysis [2] (windows in the spectrum)
 - the Localized Spectrum Analysis, LSA [3] (points in the spectrum)

• LSA:

$$\widehat{s}(x, y, f, 0, \alpha) = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} \underline{s(u, v)} \underline{g(x - u, y - v)} e^{-2i\pi f u(\cos\alpha + f v \sin\alpha)} du dv$$

with:

- **1.** s(u,v): signal = matrix of gray levels
- **2.** g(x-u, y-v): Gaussian window
- $\widehat{s}(x, y, f, 0, \alpha)$ and $\widehat{s}(x, y, 0, f, \alpha)$: two complex numbers for each image \rightarrow 2 arguments \rightarrow 2 phases for each image \rightarrow 2 displacement components

^[1] M. J. Hytch, E. Snoeck, R. Kilaas, Ultramicroscopy, 74:131-146, 1998
[2] X. Dai, H. Xie, H. Wang, Optics and Laser Technology, 58(6):119-127, 2014
[3] M. Grédiac, F. Sur, B. Blaysat, Strain, 52(3):205--243, 2016

Outline

- 1- Basics on the grid method
- 2- Preparation of the specimen
- 3- How to extract displacement/strain fields from the images?
- 4- Results
- 5- Conclusion

Test A: compression + shear

- force-driven: 0,02 kN/s, Fmax=6,3 kN (...)
- frequency: 2 images/s

24

mean stress $\overline{\sigma_{xy}}$ vs. mean strain $\overline{\varepsilon_{xy}}$

$$\overline{\sigma_{xy}} = \frac{F}{S} \times \frac{\sqrt{2}}{2} \qquad \qquad \overline{\varepsilon_{xy}} = \frac{\overline{u_x}(Z_1) - \overline{u_x}(Z_2)}{distance(Z_1, Z_2)}$$

25

mean stress $\overline{\sigma_{yy}}$ vs. mean strain $\overline{\varepsilon_{yy}}$

$$\overline{\sigma_{yy}} = \frac{F}{S} \times \frac{\sqrt{2}}{2} \qquad \qquad \overline{\varepsilon_{yy}} = \frac{\overline{u_y}(Z_1) - \overline{u_y}(Z_2)}{distance(Z_1, Z_2)}$$

Displacement maps at Point P₁

Strain and rotation maps at Point P₁

Displacement maps at Points P₂

Strain and rotation maps at Point P₂

Displacement maps at Points P₃

Strain and rotation maps at Point P₃

Strain field: cross-section of the ε_{xy} map for various loading amplitudes

Test B: shear

- force driven 0,02 kN/s, Fmax=1,9 kN
- frequency: 2 images/s
- lighting issues \rightarrow noiser strain maps

$$\overline{\varepsilon_{xy}} = \frac{\overline{u_x}(Z_1) - \overline{u_x}(Z_2)}{distance(Z_1, Z_2)}$$

Crack initiation + propagation

Outline

- 1- Basics on the grid method
- 2- Preparation of the specimen
- 3- How to extract displacement/strain fields from the images?
- 4- Results
- **5- Conclusion**

Conclusion:

- feasibility study, in-plane displacement/strain measurement with the grid method
- strong heterogeneities in the strain field due to the heterogeneous nature of the materials
- crack detection (appearance + propagation) in the displacement field

Conclusion:

- feasibility study, in-plane displacement/strain measurement with the grid method
- strong heterogeneities in the strain field due to the heterogeneous nature of the materials
- crack detection (appearance + propagation) in the displacement field
- information potentially valuable for the design of superconducting magnets

Conclusion:

- feasibility study, in-plane displacement/strain measurement with the grid method
- strong heterogeneities in the strain field due to the heterogeneous nature of the materials
- crack detection (appearance + propagation) in the displacement field
- information potentially valuable for the design of superconducting magnets
- qualitative or quantitative measurement? \rightarrow two recent improvements:

1- decreasing the noise level in the map \rightarrow optimizing the pattern

2D grids \rightarrow checkerboards [1]

2- strain maps blurred because of convolution \rightarrow systematic error \rightarrow deconvolution algorithm suitable for strain maps [2]

[1] M. Grédiac, B. Blaysat, F. Sur, *Experimental Mechanics*, in press, 2018
[2] M. Grédiac, B. Blaysat, F. Sur, *Experimental Mechanics*, in revision, 2018

the second s	/

σ

Thank you for your attention

Any questions?

Phase unwrapping:

- argument of a complex number $\rightarrow 2\pi$ phase jumps in phase maps if the amplitude of the phase > 2π
- map of « wrapped » phases \rightarrow phase maps must be « unwrapped » [1]

• example

before unwrapping

45

[1] Huntley J. M., Applied Optics, 1989

• $\widehat{s}(x, y, 0, f, \alpha)$ and $\widehat{s}(x, y, f, 0, \alpha)$: two complex numbers for each image \rightarrow 2 arguments \rightarrow 2 phases for each image \rightarrow 2 displacement components

$$\begin{vmatrix} u_x(x,y) &= -\frac{p}{2\pi} \Delta \Phi_x \\ u_y(x,y) &= -\frac{p}{2\pi} \Delta \Phi_y \end{vmatrix}$$

fixed-point algorithm to find the displacement:

$$\begin{aligned} u_x(x,y) &= -\frac{p}{2\pi} \left[\Phi_x^{cur}(x + u_x)x, y), y + u_y(x,y) \right) - \Phi_x^{ref}(x,y) \right] \\ u_y(x,y) &= -\frac{p}{2\pi} \left[\Phi_y^{cur}(x + u_x)x, y), y + u_y(x,y) \right) - \Phi_y^{ref}(x,y) \right] \end{aligned}$$

• with small strains, one iteration to reach convergence

Displacement field at Point C₁

Strain + rotation fields at Point C₁

Displacement field at Point C₂

Strain + rotation fields at Point C₂

50

Displacement field at Point C₃

Strain + rotation fields at Point C₃

