

Sub-modeling approach of plastically deformed geometries of Nb₃Sn cables and strands for the 11T dipole magnet.

<u>M. Daly</u>, C. H. Löffler, O. Sacristan de Frutos, R. Gauthier, M. Guinchard, A. T. Fontenla, F.Savary.

Workshop #2 on Nb3Sn technology for accelerator magnets. Paris - October 11-12, 2018

Summary

- Overview
- Material characterisation
 - Experimental work
- Validation of material models
 - Calibration
 - Detailed models
- Multi-scale approach
 - From coil to filament
- Linking global coil behaviour to local strands and filaments
 - Stress/Strain/Ic
- Concluding remarks

Introduction

- Some gap in knowledge of material properties:
 - Different cable configurations (Including Mica)
 - Large deviation in material properties obtained from 10-stacks
- Mitigated success in short model dipole magnet performances.
 - FE models do not sufficiently capture the stress-strain behaviour of the impregnated 11T dipole coils.
 - Increasing the detail of FE models requires additional material properties.
- No straightforward correlation between strands within test samples (2-stacks) and strands within coil geometries.

FEA comparison provided by C. H. Löffler

Detailed Characterisation

- Actual 10-stacks have four distinct materials:
 - Pure resin (8%)
 - Reacted S2/Resin/mica composite (13%)
 - Conductor (Nb₃Sn/Cu) (79%)
 - Stainless Steel core (mostly included in 79% conductor)
- Keystone effects.
- Rutherford distribution of conductor.
- Plastified conductor.

Segmentation achieved using ScanIP from Synopsys

CHARACTERISATION PROCEDURE

Validate:

Stacks, Collaring

Experimental

- 10-stack sample preparation
 - Reproduces as best as possible the fabrication of the 11T dipole.
 - Cavity size equivalent to 10 cables in coil cross-section.
- Specific mould design
 - Ease of use/unmoulding
 - Can be used for producing witness samples
- Samples cut to 20 mm lengths
- Samples tested in custom-made rig with 8 LVDTs for producing stress-strain curves and Poisson ratios in all xyz directions.

10-stack Measurements (Azimuthal)

- Compression of 10-stacks in the <u>Azimuthal</u>, Radial and Longitudinal direction:
 - 3 load cycles
 - 12 and 50 cycles
 - Load and 1hr hold
 - Retest 15 days later
- Validation against bronze and insulated copper cables.
- Different stiffness for first loading of samples and subsequent unloadingreloads

Speaker: M.Daly

10-stack Measurements (Azimuthal)

- Compression of 10-stacks in the <u>Azimuthal</u>, Radial and Longitudinal direction:
 - 3 load cycles
 - 12 and 50 cycles
 - Load and 1hr hold
 - Retest 15 days later
- Validation against bronze and insulated copper cables.
- Different stiffness for first loading of samples and subsequent unloadingreloads

Speaker: M.Daly 8

Compression Test Results 01

10-stack samples:

- Tests performed in the azimuthal direction at 3MPa.s⁻¹
- Initial pre-compression at 20 MPa.
- High repeatability for bronze and copper 10-stacks and resin blocks.
- Elastic modulus measured after the first loading using the secant method.
- The modulus can vary depending on the method used for measuring the slope.

Compression Test Results 02

10-stack samples:

- New results for prototype cable insulation for CR07 coil.
- Overall behaviour similar to previous tests.
- Tests performed in the azimuthal direction at 3MPa.s⁻¹
- Initial pre-compression at 0,2 MPa.
- High repeatability for 10stacks.

Material Characterisation & Validation

Material Characterisation & Validation

Stress-strain behaviour of stacks dependent on a number of factors (caveats):

- Geometry (blunt contours, alignment of strands).
- Volume fraction of individual materials.
- Material laws used.
- Interaction between parts (Friction).

Material Characterisation & Validation

- Material properties estimated through curve-fitting of experimental data.
- Copper annealing point is drastically above experimental measurements.
- Other material models used such as Ramberg-Osgood hardening model.

Material	E (GPa)	σ_{Yield} (MPa)
Resin	3,8	100
Bronze	118	117
Copper	109	250
Fibre/Mica/Resin	11	250
SC (Nb ₃ Sn) filaments	140	400
SC (Nb ₃ Sn)/Cu (1:1) composite strand	123	250
SC (Nb ₃ Sn) 10-stack	36 ± 2	N/A

Multiscale imaging of coil 107

A region of interest and a strand of interest were chosen within coil 107.

The same strand was imaged under an SEM in much greater detail including filaments.

- The segmented and meshed (2D) image of Coil 107 was imported from ScanIP into Ansys and simply loaded.
- The stresses on the strand within the coil were exported to the SEM image that was segmented and meshed in ScanIP.
- The stresses applied to the strand are the most representative stresses that would be observed at a strand level (mix of azimuthal & transverse).
- This method also allows us to compute the stresses on the filaments and estimate degradation using scaling laws.

Multiscale imaging of coil 107

A region of interest and a strand of interest were chosen within coil 107.

The same strand was imaged under an SEM in much greater detail including filaments.

- The segmented and meshed (2D) image of Coil 107 was imported from ScanIP into Ansys and simply loaded.
- The stresses on the strand within the coil were exported to the SEM image that was segmented and meshed in ScanIP.
- The stresses applied to the strand are the most representative stresses that would be observed at a strand level (mix of azimuthal & transverse).
- This method also allows us to compute the stresses on the filaments and estimate degradation using scaling laws.

Mid-plane High Stresses

MICA effects on mid-plane

- In order to investigate the effects of the C-shape MICA on the mid-plane stresses observed using Fuji paper, the stresses were computed using the geometry of Coil 107.
- Stresses on the mid-plane were seen to vary along the cable width. This is a result of the keystone (geometry) and increased stiffness as a result of the C-shape MICA.

3D 2-Stack

- Impregnated Nb₃Sn 10-stack imaged in 3D using lab-based X-ray Tomography imaging.
- Two central cables were chosen for 3D segmentation.
- Geometry representative of the 2-stack cables used for characterising Ic degradation during transverse loading.
- 3 materials segmented:
 - Conductor
 - Pure Resin
 - Composite: Resin/fibre glass/Mica
- Can be used to analyse the effects of the Rutherford cable geometry in 2D or 3D:
 - Estimate stresses/strains in the straight and twisted sections.

3D X-ray Imaging done at BAM, Courtesy of C.Scheuerlein.3D reconstruction achieved using ScanIP..

3D 2-Stack

- Impregnated Nb₃Sn 10-stack imaged in 3D using lab-based X-ray Tomography imaging.
- Two central cables were chosen for 3D segmentation.
- Geometry representative of the 2-stack cables used for characterising Ic degradation during transverse loading.
- 3 materials segmented:
 - Conductor
 - Pure Resin
 - Composite: Resin/fibre glass/Mica
- Can be used to analyse the effects of the Rutherford cable geometry in 2D or 3D:
 - Estimate stresses/strains in the straight and twisted sections.

3D Strand

3D X-ray tomography of the bent region of the RRP Rutherford Cable. Regions were segmented into thee materials in ScanIP:

- SC Conductor
- Copper Matrix
- 2nd Phase/Void
- 3D X-ray tomography images of the bent strand showed regions of leakage and puncture holes in the filaments.
- Deformation due to cabling can be rendered in 3D.
- Simulations can be performed on the 3D volume using ScanIP volumes exported to Ansys using the most recent material properties.

Comparative Study of Nb3Sn Reacted Strands

3D X-ray Imaging done at the Manchester X-ray Imaging Facility (MXIF), Work done in close collaboration with Patrick Ebermann (CERN).

Concluding Remarks

- A successful attempt at characterising the material properties of the 11T dipole magnet using 10stack and equivalent geometries. But this requires a more standard and repetitive approach.
- Developed a sub-modelling method for obtaining the global and local stress-strain states of coils down to filaments.
- Feasibility of introducing complex geometries to current CAD models used for designing and optimising the 11T dipole.
- The added detail has helped understand and verify some observed phenomena from the 11T prototype.
- Aiming to continue to use the validated material models to assess the degradation of superconducting properties as a result of transversal loads at the strand and filament level.

21

Thank you for listening

Further acknowledgements: N.Bourcey, C. Fichera, F. Lackner, J. Mazet, T. Mikkola, J C. Perez, C. Scheuerlein, J.Behnsen (MXIF), J. Carr (MXIF).

Speaker: M.Daly

Additional Slides

Experimental

10-stack sample preparation

- Reproduces as best as possible the fabrication of the 11T dipole.
- Cavity size equivalent to 10 cables in coil cross-section.
- Specific mould design
 - Ease of use/unmoulding
 - Can be used for producing witness samples
- Samples cut to 20 mm lengths

Coil Cross section simulations

