UNIVERSITEIT TWENTE.

Transverse pressure sensitivity of state-of-the-art Nb₃Sn Rutherford cables

P. Gao, S. Wessel, <u>M. Dhallé</u>

CEA/CERN Workshop on Nb₃Sn technology for accelerator magnets Paris, 11-12 October 2018

Content:

- 1. Introduction
 - Magnet designs & stress estimates
 - Reversible / irreversible strain response Nb₃Sn
 - Measuring the transverse stress response of cables
- 2. Experimental
 - Set-up @ UTwente
 - Samples
- 3. Results
 - DS cables
 - SMC cables
- 4. Conclusions

High currents & - fields combine to high Lorentz forces !

Let's make a (very rough) estimate for an 'idealized' cos-theta dipole:

 $\mathbf{K}(\theta) = -K_0 \cos(\theta) \hat{\mathbf{z}} \quad [A/m] \qquad \mathbf{B} = \frac{\mu_0 K_0}{2} \hat{\mathbf{y}} \quad [T]$ $\mathbf{dF}(\theta) = \frac{\mu_0 K_0^2}{2} \cos(\theta) R \, \mathrm{d}\theta \hat{\mathbf{x}} \quad [N/m] \quad \sigma_{a,p} = \frac{2}{w} \int_{0}^{\frac{\pi}{2}} \mathrm{d}F_a = \frac{\mu_0 K_0^2}{2} \frac{R}{w} \quad [Pa]$ $B \approx 10 T \quad \rightarrow \quad K_0 \approx 210^7 \text{ A/m} \quad \rightarrow \quad \sigma \approx 250 \text{ MPa}$

2D current model instead of 1D:

Rossi 2012

1. Introduction: magnet designs & stress estimates

UNIVERSITY OF TWENTE.

1. Introduction: magnet designs & stress estimates

UNIVERSITY OF TWENTE.

Auchmann 2018 (PSI)

Toral 2018 (CIEMAT)

Alternative designs

 $B = 16T \implies \sigma \sim 150 - 200 MPa$

1. Introduction: magnet designs & stress estimates

Figure 4. Comparison between the different datasets analyzed. The ordinate axis, which represents the B_{c2} in T, have been shifted from one dataset and placed alternately on the left and on the right. The marks show the B_{c2} data at 4.2 K while the line shows the fits using the new two parameter exponential scaling law.

Bordini, 2013

Figure 2.23. Critical current as a function of intrinsic strain, temperature and magnetic field. The points are measured on the PACMAN and the lines are calculated with Equation 1.5.

Nijhuis, 2016

It's well-established that all Nb_3Sn conductors exhibit a significant *intrinsic* strain-dependence in their critical current and in their 2nd critical field.

EMS

1. Introduction: strain response of Nb₃Sn

UNIVERSITY OF TWENTE.

Fig. 2 Critical current I_c of specimen 3 as a function of uniaxial strain for magnetic fields ranging from 7 to 19 T. The strain ϵ_m where I_c is a maximum is 0.32% for this specimen. The strain ϵ_{irraw} , where the curve becomes irreversible upon unloading, is about 0.8% for this specimen

Ekin, 1980

Figure 5.13: The extrapolated B_{C2} * as a function of the deviatoric strain calculated with the elastic model for the tape conductor. The indicated points are measured on two different bending springs U-steel and U-20 K (= brass) respectively.

Ten Hake, 1994

The phenomenological understanding centers on strain scaling of the critical surface, and on the recognition of the *deviatoric strain* as the driving influence.

1. Introduction: strain response of Nb₃Sn

Nijhuis, 2016

The good news is that this <u>intrinsic</u> strain sensitivity is reversible and reproducible, meaning it can be 'designed for'.

The bad news is that above a *reversible strain limit* the superconducting filaments start to crack and the critical current is not recovered upon strain release: the magnet degrades.

1. Introduction: measuring the stress response of cables

Jakob, 1989 (PSI, RT loading, short section)

- Short-sample
- Either RT- or in-situ loading
- Mitigating effect of *impregnation*

First cable measurements

Boschman, 1991 (Twente, in-situ loading, short section, partial & full impregnation)

Jakob, 1991 (PSI, impregnated)

Further evidence of impregnation effect

Pasztor, 1994 (PSI, different fillers)

Mondonico 2012

Xu 2014

Valone 2018

Dietderich, 1999 (LBNL, short sample, in-situ loading) First explorations of onset irreversible degradation ...

Den Ouden, 2000 (Twente)

1. Introduction: measuring the stress response of cables

Barzi, 2004 (FNAL, short sample, in-situ loading)

 \dots and with reversible B_{c2} response

Bordini, 2014 (CERN, long sample, RT loading)

Content:

- 1. Introduction
 - Magnet designs & stress estimates
 - Reversible / irreversible strain response Nb₃Sn
 - Measuring the transverse stress response of cables
- Experimental 2.
 - Set-up @ UTwente
 - Samples
- 3. Results
 - DS cables
 - SMC cables
- 4. Conclusions

2. Experimental: the set-up @ UTwente

Van de Klundert, 1981

50 kA superconducting transformer in 11T solenoid

2. Experimental: the set-up @ UTwente

UNIVERSITY OF TWENTE.

Heat treatment ...

... impregnation

N.

2. Experimental: the set-up @ UTwente

- 240 kN E.M. cryo-press
- custom-cut pushing anvil (w. strain gauges)
- Displacement read-out

2. Experimental: State-of-the art cable samples

Sample	cross section (mm ²)	strand type	# of strands	keystone (°)	transposition length (mm)
DS-RRP	14.7 × 1.25	RRP-108/127	40	0.75	100
DS-PIT-1	14.7 × 1.25	PIT-114	40	0.71	100
DS-PIT-2	14.7 × 1.25	PIT-114	40	0.71	100
SMC-RRP-1	10 × 1.8	RRP-132/169	18	0	63
SMC-RRP-2	10 × 1.8	RRP-132/169	18	0	63
SMC-PIT-1	10 × 1.8	PIT-192	18	0	63
SMC-PIT-2	10 × 1.8	PIT-192	18	0	63

Strand	diameter (mm)	Cu / non-Cu ratio	
RRP-108/127	0.7	1.19	
PIT-114	0.7	1.25	
RRP-132/169	1	1.22	
PIT-192	1	1.22	

Impregnation

- DS: MY740/HY906/DY062 (100/90/02)
- SMC : CTD101-K (A/B/C = 100/90/1.5)

Content:

- 1. Introduction
 - Magnet designs & stress estimates
 - Reversible / irreversible strain response Nb₃Sn
 - Measuring the transverse stress response of cables
- 2. Experimental
 - Set-up @ UTwente
 - Samples
- 3. Results
 - DS cables
 - SMC cables
- 4. Conclusions

DS RRP cable

 $\sigma_{-10\%} \approx 240 \text{ MPa}$; $\sigma_{-1\%, \text{ irr.}} \approx 250 \text{ MPa}$

DS PIT cables

 $\sigma_{-10\%} \approx$ 70-100 MPa ; $\sigma_{-1\%, irr.} \approx$ 50 MPa

SMC cables

– σ_{-10%} ≈ 70-100 MPa ; σ_{-1%, irr.} ≈ 70-120 MPa

- SMC comparison with CERN data inconsistent
- Problem was identified as parallelism issue (0.2°!)
- Remedied with extra tooling & second impregnation step

N.

3. Results

New SMC cables (of same strand material) after 2nd impregnation

 $\sigma_{-10\%} \approx 100-140 \text{ MPa}$; $\sigma_{-1\%, \text{ irr.}} \approx 120-150 \text{ MPa}$

Benchmarking SMC RRP between UTwente & CERN

Duveauchelle, 2018 (CERN, RT loading)

 $ΔI_c = -10\%$ @ σ ≈ 135 MPa $ΔI_{c, irr} = -1\%$ @ σ ≈ 150 MPa $ΔI_c = -10\%$ @ σ ≈ 130 MPa $ΔI_{c, irr} = -1\%$ @ σ ≈ 150 MPa

Effect of thermal cycling & mechanical cycling

	SMC-PIT2 (1 st cool-down)			
Cycle	<i>I</i> _c (149MPa) <i>I</i> _c (1.6MPa) (kA) (kA)		$\Delta I_{\rm c}$ irrev.	
1	14.79	17.57	(70)	
•	14.70	17.57	-3.22	
2	14.73	17.57	-3.22	
3	14.74	17.53	-3.43	
4	14.73	17.52	-3.50	
5	14.75	17.51	-3.52	

		SMC-RRP2 (2 nd cool-down)		SMC-RRP2 (3 rd cool-down)			
	Cycle	<i>I</i> _c (149MPa) (kA)	<i>l</i> ₀(1.6MPa) (kA)	∆ <i>I</i> _c irrev. (%)	<i>l</i> ₀(175MPa) (kA)	<i>I</i> c(1.4MPa) (kA)	∆ <i>I</i> _c irrev. (%)
	1	18.67	20.86	-1.00	18.14	21.11	+0.16
	2	18.91	20.87	-0.97	18.05	21.08	+0.02
	3	18.72	20.90	-0.80	18.12	21.10	+0.11
	4	18.76	20.88	-0.90	18.13	21.06	-0.07

Coming up: 11T High-Lumni cable

H15OC0239C

Production length:	235m
Transposition pitch:	$100 \mathrm{mm}$
Mid thickness:	$1.254 \mathrm{mm}~(\sigma = 0.000)$
Width:	14.695mm ($\sigma = 0.002$)
Keystone angle:	$0.784^o~(\sigma=0.014)$
N. of strands:	40
Core width:	12mm
Core thickness:	$25 \mu { m m}$
Strand diameter:	$0.70\mathrm{mm}$
Production date:	23/11/2017

4. Conclusions

- 16T-class magnets imply transverse pressures of ~ 150 200 MPa, cable data are scattered, but indicate this is ambitious;
- Better understanding of *local* stress distribution (and the parameters involved!) is needed (and evolving);

- Benchmarking exercises remain very useful;
- > Magnet production quality control will be essential.

