LHCb: Experimental overview on measurements with Rare Decays

Carla Marin Benito on behalf of the LHCb collaboration

IMPLICATIONS OF LHCB MEASUREMENTS AND FUTURE PROSPECTS

CERN, 17-19 October 2018

- Rare decays of heavy hadrons
- Experimental results at LHCb:
 - Radiative b-decays
 - Leptonic b-decays
 - Semi-leptonic b-decays
 - LFV in *b*-decays
 - Charm and strange rare decays
- Future prospects

4 T

Rare decays of heavy hadrons

Rare Decays (RD) are Flavour Changing Neutral Currents (FCNC) forbidden at tree-level in the Standard Model (SM)

- Sensitive to new particles entering the loop diagrams
- Allow to probe New Physics (NP) at much larger scales (compared to direct searches)

< □ > < □ > < □ > < □ > < □ > < □ >

Rare decays of heavy hadrons

Rare Decays (RD) are Flavour Changing Neutral Currents (FCNC) forbidden at tree-level in the Standard Model (SM)

- Sensitive to new particles entering the loop diagrams
- Allow to probe New Physics (NP) at much larger scales (compared to direct searches)

Model-independent description through effective field theory approach:

$$H_{eff} \propto V_{tb}V_{ts}^* \sum_i \left(C_i \mathcal{O}_i + C_i' \mathcal{O}_i'\right)$$

- \mathcal{O}_i : complete basis of 4-body operators allowed by Lorentz invariance
- C_i: Wilson coefficients absorb effect of heavy dof and are computed pertubatively matching to full SM theory
- $\rightarrow\,$ Deviations from SM calculations are a clear sign of NP effects!

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Probing New Physics with rare decays

Dominant operators in the SM:

$$C_{7}^{(\prime)} \propto (\bar{s}\sigma_{\mu\nu}P_{L(R)}b)F^{\mu\nu}$$

$$C_{9}^{(\prime)} \propto (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma_{\mu}\ell)$$

$$C_{10}^{(\prime)} \propto (\bar{s}\gamma_{\mu}P_{L(R)}b)(\bar{\ell}\gamma_{\mu}\gamma_{5}\ell)$$

$$egin{aligned} &\mathcal{C}_{S}^{(\prime)} \propto (\overline{s} \mathcal{P}_{L(R)} b)(\overline{\ell}\ell) \ &\mathcal{C}_{P}^{(\prime)} \propto (\overline{s} \mathcal{P}_{L(R)} b)(\overline{\ell} \gamma_{5} \ell) \end{aligned}$$

can be probed with different RD transitions:

Transition	$C_{7}^{(')}$	$C_{9}^{(')}$	$C_{10}^{(')}$	$C_{S,P}^{(\prime)}$
$b \! ightarrow s \gamma$	Х			
$b\! ightarrow\ell^+\ell^-$			Х	Х
$b\! ightarrow s\ell^+\ell^-$	Х	Х	Х	

Global fits allow to compare SM predictions to large number of observables

< □ > < □ > < □ > < □ > < □ > < □ >

Experimental results

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Implications WS 2018 4 / 29

A D N A B N A B N A B N

Radiative $b \rightarrow s \gamma$ decays

Studied in detail at B-factories

- BR and CPV measurements in good agreement with the SM [PDG]
- constrain $|C_7|^2 + |C_7'|^2$ only \rightarrow room for NP in C_7'
- C'_7 accessible experimentally through photon polarisation:
 - dominantly left-handed in SM due to absence of right-handed currents
 - up to 50% right-handed polarisation in SM extensions [Atwood et al., Phys.Rev.Lett.79:185-188,1997]

$$\alpha_{\gamma}^{SM} = \frac{P(\gamma_L) - P(\gamma_R)}{P(\gamma_L) + P(\gamma_R)} = 1 + \mathcal{O}\left(\frac{m_s}{m_b}\right)$$

Photon polarisation at LHCb

• First observation in $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ with 3 fb⁻¹ (2011-2012):

PHYS. REV. LETT. 112, 161801 (2014)

Full amplitude analysis ongoing

Photon polarisation at LHCb

• First observation in $B^+ \rightarrow K^+ \pi^+ \pi^- \gamma$ with 3 fb⁻¹ (2011-2012):

Aud 0.1

0.05

-0.05 -0.1

1200

PHYS. REV. LETT. 112, 161801 (2014)

Full amplitude analysis ongoing

JHEP04(2015)064

1400

$$\begin{array}{l} {\cal A}_{\rm T}^{(2)}=-0.23\pm 0.23\pm 0.05\\ {\cal A}_{\rm T}^{\rm Im}=+0.14\pm 0.22\pm 0.05 \end{array}$$

Update with full dataset ongoing

・ ロ ト ・ 同 ト ・ 三 ト ・ 三 ト

LHCb

1800 $M(K\pi\pi)$ [MeV/ c^2]

1600

$B^0_s ightarrow \phi \gamma$ [Phys. Rev. Lett. 118, 021801 (2017)]

Time-dependent decay rate is sensitive to photon polarisation:

$$\Gamma(t) \propto e^{-\Gamma_s t} \left[\cosh(\frac{\Delta\Gamma_s t}{2}) - \mathcal{A}^{\Delta} \sinh(\frac{\Delta\Gamma_s t}{2}) \pm \mathcal{C} \cos(\Delta m_s t) \mp \mathcal{S} \sin(\Delta m_s t)
ight]$$

• SM prediction: $\mathcal{A}^{\Delta} \simeq \frac{2 \operatorname{Re}(e^{-i\phi_s} C_7 C_7')}{|C_7|^2 + |C_7'|^2} = 0.047^{+0.029}_{-0.025}$ [PLB 664 (2008) 174]

・ロット 4 回 ト 4 日 ト - 日 - うらつ

$B^0_s ightarrow \phi \gamma$ [phys. rev. lett. 118, 021801 (2017)]

7 / 29

Time-dependent decay rate is sensitive to photon polarisation:

$$\Gamma(t) \propto e^{-\Gamma_s t} \left[\cosh(\frac{\Delta\Gamma_s t}{2}) - \mathcal{A}^{\Delta} \sinh(\frac{\Delta\Gamma_s t}{2}) \pm \mathcal{C} \cos(\Delta m_s t) \mp \mathcal{S} \sin(\Delta m_s t)
ight]$$

• SM prediction: $\mathcal{A}^{\Delta} \simeq \frac{2\text{Re}(e^{-i\phi_s}C_7C_7')}{|C_7|^2 + |C_7'|^2} = 0.047^{+0.029}_{-0.025}$ [PLB 664 (2008) 174] Untagged measurement with 3 fb⁻¹: Tagged measurement ongoing:

Radiative baryon decays

Baryon $b \rightarrow s\gamma$ decays are also accessible at LHCb and provide complementary measurement of the photon polarisation:

• Angular analysis of $\Lambda_b^0 \to \Lambda \gamma$:

$$\frac{d\Gamma}{d\cos\theta_p} \propto 1 - \alpha_\gamma \alpha_{p,1/2} \cos\theta_p \alpha_{p,1/2} = (0.642 \pm 0.013) [PDG]$$

- Other decays with richer angular distributions: $\Xi_b^- \to \Xi^- \gamma$ and $\Omega_b^- \to \Omega^- \gamma$
- Experimentally very challenging but results expected soon!

Rare Decays measurements

Image: Image:

Leptonic $b \rightarrow \ell^+ \ell^-$ decays

Helicity suppression in the SM \rightarrow extremely sensitive to NP effects

- theoretically clean due to fully leptonic final state
- probe new scalars in the loops

$B^0{}_{(s)} \! ightarrow \mu^+ \mu^-$ [Phys. Rev. Lett. 118, 191801 (2017)]

First observation by single experiment exploiting 4.4 fb^{-1} (2011-2016):

• $B^0_s
ightarrow \mu^+\mu^-$ observed with 7.6 σ , no significant excess for $B^0
ightarrow \mu^+\mu^-$

- ATLAS limit below SM: $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) < 2.1 \times 10^{-10}$ at 95% C.L.
- First measurement of $B_s^0 \rightarrow \mu^+ \mu^-$ lifetime:

$$au(B_s^0
ightarrow \mu^+ \mu^-) = 2.04 \pm 0.44 \pm 0.05 \, \mathrm{ps}$$

Carla Marin (carla.marin@cern.ch)

$B^0{}_{(s)}$ $ightarrow au^+ au^-$ [Phys. Rev. Lett. 118, 251802 (2017)]

 τ decays very challenging at LHCb due to missing neutrinos

- $\rightarrow\,$ Exploit hadronic decay of τ and excellent vertex resolution
- $\rightarrow\,$ Exploit kinematic constraints on the system

Search with 3 fb^{-1} (2011-2012) compatible with background only:

First direct limit on $B_s^0 \rightarrow \tau^+ \tau^-$ and world best limit on $B^0 \rightarrow \tau^+ \tau^-$:

$$\mathcal{B}(B^0_s o au^+ au^-) < 6.8 imes 10^{-3}$$
 at 95% C.L.
 $\mathcal{B}(B^0 o au^+ au^-) < 2.1 imes 10^{-3}$ at 95% C.L.

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Semi-leptonic $b \rightarrow s \ell^+ \ell^-$

Contributions from both $C_7^{(\prime)}$, $C_9^{(\prime)}$ and $C_{10}^{(\prime)}$ in different q^2 regions

Give access to differential branching ratios and angular distributions

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Differential branching ratios in $b ightarrow s \ell^+ \ell^-$ decays

Several measurements systematically below the SM at low q^2 :

JHEP 04 (2017) 142 , JHEP 09 (2015) 179, JHEP 06 (2015) 115

• Interesting to check in $b \rightarrow d\ell^+ \ell^-$ decays.

Carla Marin (carla.marin@cern.ch)

Angular observables in $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ [JHEP 02 (2016) 104]

Form factor "free" observables: $P_5' = \frac{S_5}{\sqrt{F_L(1-F_L)}}$ [JHEP 05 (2013) 137]

Phys.Rev.Lett.118(2017)11,111801, JHEP10(2018)047, PHYS.LETT.B781(2018)517-541, Descotes-Genon et al., Altmannshofer and Straub

- Update with Run 2 data ongoing.
- Interesting also to study other modes.

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

A sign of New Physics?

• Global fits point to additional contributions to C_9 or C_9 and C_{10}

Eur.Phys.J.C(2017)77:377

- Could the effect on C_9 be explained by hadronic effects?
 - See talk by R. Zwicky on how to eliminate hadronic uncertainties

Phase difference in $B^+ \rightarrow K^+ \mu^+ \mu^-_{\text{[EUR.PHYS.J.C(2017)77:161]}}$

Fit to full dimuon mass spectrum including: $\rho, \omega, \phi, J/\psi, \psi(2S), \psi(3770), \psi(4040), \psi(4160), \psi(4415)$

$\mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) = (4.37 \pm 0.15 \pm 0.23) \times 10^{-7}$

- ightarrow Interference is small, 3 σ deviation in C₉-C₁₀ plane wrt SM
 - Repeating analysis for $B^0
 ightarrow {\cal K}^{*0} \mu^+ \mu^-$
 - New methods to probe large-distance effects by Blake et al., Bobeth et al.

Exploring new modes: b-baryon decays

• First observation of $\Lambda_b^0 \rightarrow p \pi^- \mu^+ \mu^-$ [JHEP 04 (2017) 029]:

• CP asymmetry in $\Lambda_b^0 \rightarrow p K^- \mu^+ \mu^-$ [JHEP 06 (2017) 108]:

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Exploring new modes: $b \rightarrow d\ell^+\ell^-$

- First evidence for the decay $B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-$ [JHEP 07 (2018) 020]:
 - Extremely challenging due to $B^0 \rightarrow K^{*0} \mu^+ \mu^-$ contamination
 - Distinguishable thanks to LHCb high momentum resolution

• Using 4.6 fb⁻¹ data (2011-2016): 3.4σ significance

 $\mathcal{B}(B_s^0 \to \overline{K}^{*0} \mu^+ \mu^-) = (2.9 \pm 1.0 (\text{stat}) \pm 0.2 (\text{syst}) \pm 0.3 (\text{norm})) \times 10^{-8}$

Opens the door to differential BR and angular analyses in $b \rightarrow d\ell^+ \ell^-!$

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Exploring new modes: angular analyses

- Angular moments of the decay $\Lambda_b^0 \rightarrow \Lambda \mu^+ \mu^-$ [JHEP 09 (2018) 146]:
 - Complementary test of SM to understand nature of anomalies
 - Focus on high q^2 region: $15 < q^2 < 20$ (GeV/ c^2)²
 - Measure full basis of 34 observables for first time
 - Use angular moments method due to available statistics
 - ▶ Using 5 fb⁻¹ data (2011-2016): results compatible with SM

 $\begin{array}{l} A_{FB}^{h} = -0.39 \pm 0.04 (\mathrm{stat}) \pm 0.01 (\mathrm{syst}) \\ A_{FB}^{h} = -0.30 \pm 0.05 (\mathrm{stat}) \pm 0.02 (\mathrm{syst}) \\ A_{FB}^{h} = +0.25 \pm 0.04 (\mathrm{stat}) \pm 0.01 (\mathrm{syst}) \end{array}$

Carla Marin (carla.marin@cern.ch)

Lepton Flavour Universality

Discrepancies in $b \rightarrow s\ell^+\ell^-$ measurements could be explained by large hadronic effects \rightarrow ratio of branching fractions with different lepton flavours, i.e., Lepton flavour universality (LFU) tests:

- Ratios accurately predicted in the SM (O(1%))
 - LFU violation from Yukawa couplings only
 - No observable effect in *b*-decays
 - Lepton mass effects only relevant in the kinematic limit
- Experimentally challenging due to different interaction of e and μ with matter
 - Important bremsstrahlung emission from e
 - Large pile-up in calorimeters leads to tighter thresholds
 - $\rightarrow\,$ Double ratios to cancel these effects and stringent cross-checks

20 / 29

ヘロト ヘヨト ヘヨト

R_K and R_{K^*}

Ratios of branching fractions measured as double ratios:

$$\begin{aligned} R_{K^*} &= \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)} = \\ &= \frac{N(B^0 \to K^{*0} \mu^+ \mu^-)}{N(B^0 \to K^{*0} J/\psi (\mu^+ \mu^-))} \cdot \frac{N(B^0 \to K^{*0} J/\psi (e^+ e^-))}{N(B^0 \to K^{*0} e^+ e^-)} \cdot \\ &\cdot \frac{\epsilon(B^0 \to K^{*0} J/\psi (\mu^+ \mu^-))}{\epsilon(B^0 \to K^{*0} \mu^+ \mu^-)} \cdot \frac{\epsilon(B^0 \to K^{*0} J/\psi (e^+ e^-))}{\epsilon(B^0 \to K^{*0} e^+ e^-)} \end{aligned}$$

efficiencies from MC with data corrections
 very strong cross-check with r_{J/ψ} = B(B⁰→K^{*0}J/ψ(μ⁺μ⁻))/B(B⁰→K^{*0}J/ψ(e⁺e⁻))

Carla Marin (carla.marin@cern.ch)

・ 同 ト ・ ヨ ト ・ ヨ ト

R_K and R_{K^*}

Results with 3 fb⁻¹ (2011-2012): 2.6 σ and 2.1 – 2.5 σ from the SM

PHYS.REV.LETT.113,151601(2014), JHEP08(2017)055

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

э

22 / 29

R_K and R_{K^*}

Results with 3 fb⁻¹ (2011-2012): 2.6 σ and 2.1 – 2.5 σ from the SM

PHYS.REV.LETT.113,151601(2014), JHEP08(2017)055

Working on:

- updated measurements with more data and reduced systematics
- tests of LFU in other modes: $B_s^0 \rightarrow \phi \ell^+ \ell^-$, $B^+ \rightarrow K^+ \pi^- \ell^+ \ell^-$, $\Lambda_b^0 \rightarrow p K^- \ell^+ \ell^-$, etc.

If confirmed \rightarrow clear sign of NP!

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Global fits with all $b \rightarrow s \ell^+ \ell^-$ observables

LFU observables point in the same direction as differential BR and angular measurements in global fits!

Phys. Rev. D 96, 055008 (2017)

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Implications WS 2018 23 / 29

Global fits with all $b \rightarrow s \ell^+ \ell^-$ observables

гнср

LFU observables point in the same direction as differential BR and angular measurements in global fits!

Specific physics models proposed, some explaining also tensions in $b \rightarrow d\ell\nu$ (see talk by S. Klaver):

- Lepto-quarks
- Pati-Salam models
- Massive vector bosons
- Insert new ideas
- See talks by D. Guadagnoli and M. Blanke

 \rightarrow important to check other RD that might be affected

Lepton Flavour Violation (LFV)

Some models predict LFV to explain LFU violation

- \bullet LFV effectively forbidden in the SM \rightarrow null test
- Large heavy-hadron samples allow to put stringent limits

LHCb results with Run 1 data: in short, all compatible with SM so far

Decay	Branching ratio limit	Reference
$\tau^- \rightarrow \rho \mu^+ \mu^+$	$4.4 imes10^{-7}$	PHYSICS LETTERS B 724 (2013)
$ au^+ ightarrow \overline{p} \mu^+ \mu^-$	$4.4 imes10^{-7}$	PHYSICS LETTERS B 724 (2013)
$B^0_s ightarrow e^+ \mu^-$	$1.1 imes10^{-8}$	PHYS.REV.LETT. 111 (2013) 141801
$B^0\! ightarrow e^+\mu^-$	$2.8 imes10^{-9}$	PHYS.REV.LETT. 111 (2013) 141801
$ au ightarrow \mu \mu \mu$	$4.7 imes10^{-8}$	JHEP 02 (2015) 121
$D^0 \! ightarrow e^+ \mu^-$	$1.3 imes10^{-8}$	PHYS. LETT. B754 (2016) 167

Searches for $b \rightarrow X \ell^+ \ell^-$ LFV decays ongoing

Carla Marin (carla.marin@cern.ch)

LFV: $B^0{}_{(s)} ightarrow e^+ \mu^-$ [Jhep 1803 (2018) 078]

New results using 3 fb^{-1} (2011-2012) and improved selection:

- Enhanced in NP models up to $\mathcal{O}(10^{-11})$
- Search in bins of output classifier to enhance sensitivity
- Results compatible with background only hypothesis

Most stringent limits on these decays:

$$\begin{array}{l} {\cal B}(B^0_s\to e^+\mu^-)<5.4\times 10^{-9} \text{ at } 90\% \text{ C.L.} \\ {\cal B}(B^0\to e^+\mu^-)<1.0\times 10^{-9} \text{ at } 90\% \text{ C.L.} \end{array}$$

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

• Angular and CP asymmetries in $D^0 \rightarrow hh\mu^+\mu^-$ [Phys.Rev.Lett.121(2018)091801]:

$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	$D^0\! ightarrow K^+K^-\mu^+\mu^-$
$A_{FB} = (3.3 \pm 3.7 \pm 0.6)\%$	$A_{FB}=(0\pm11\pm2)\%$
${\cal A}_{2\phi} = (-0.6 \pm 3.7 \pm 0.6)\%$	$A_{2\phi} = (9 \pm 11 \pm 1)\%$
$A_{CP} = (4.9 \pm 3.8 \pm 0.7)\%$	$A_{CP}=(0\pm11\pm2)\%$

differential asymmetries also measured

3

• Angular and CP asymmetries in $D^0 \rightarrow hh\mu^+\mu^-$ [Phys.Rev.Lett.121(2018)091801]:

$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	$D^0\! ightarrow K^+K^-\mu^+\mu^-$
$A_{FB} = (3.3 \pm 3.7 \pm 0.6)\%$	$A_{FB}=(0\pm11\pm2)\%$
$A_{2\phi} = (-0.6 \pm 3.7 \pm 0.6)\%$	$A_{2\phi} = (9 \pm 11 \pm 1)\%$
$A_{CP} = (4.9 \pm 3.8 \pm 0.7)\%$	$A_{CP}=(0\pm11\pm2)\%$

differential asymmetries also measured

• Search for the rare $\Lambda_c^+ \rightarrow \rho \mu^+ \mu^-$ [PHYS. REV. D 97, 091101 (2018)]:

• No signal outside the ϕ and ω regions

 $\mathcal{B}(\Lambda_c^+\!\to\rho\mu^+\mu^-)<7.7\times10^{-8}$ at 90% C.L.

Carla Marin (carla.marin@cern.ch)

26 / 29

• Angular and CP asymmetries in $D^0 \rightarrow hh\mu^+\mu^-$ [Phys.Rev.Lett.121(2018)091801]:

$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	$D^0\! ightarrow K^+K^-\mu^+\mu^-$
$A_{FB} = (3.3 \pm 3.7 \pm 0.6)\%$	$A_{FB}=(0\pm11\pm2)\%$
$A_{2\phi} = (-0.6 \pm 3.7 \pm 0.6)\%$	$A_{2\phi} = (9 \pm 11 \pm 1)\%$
$A_{CP} = (4.9 \pm 3.8 \pm 0.7)\%$	$A_{CP}=(0\pm11\pm2)\%$

- differential asymmetries also measured
- Search for the rare $\Lambda_c^+ \rightarrow \rho \mu^+ \mu^-$ [PHYS. REV. D 97, 091101 (2018)]:
 - No signal outside the ϕ and ω regions

 $\mathcal{B}(\Lambda_c^+\!\to\rho\mu^+\mu^-)<7.7\times10^{-8}$ at 90% C.L.

- Update of $D^0\!\to \mu^+\mu^-$ search ongoing
- See talk by G. Hiller for SM predictions and NP effects

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Rare strange decays

• Search for $K^0_{
m S}
ightarrow \mu^+ \mu^-$ with 3 fb⁻¹ [EUR. PHYS. J. C, 77 10 (2017) 678]:

Compatible with background only:

$$\label{eq:B} \begin{array}{l} {\cal B}({\cal K}_{\rm S}^0 \! \to \mu^+ \mu^-) < 0.8 \times 10^{-9} \text{ at} \\ 90\% \text{ C.L.} \end{array}$$

3

Rare strange decays

• Search for $K^0_{
m S}
ightarrow \mu^+ \mu^-$ with 3 fb⁻¹ [EUR. PHYS. J. C, 77 10 (2017) 678]:

Compatible with background only:

$${\cal B}({\cal K}^0_{\rm S} o \mu^+\mu^-) < 0.8 imes 10^{-9}$$
 at 90% C.L.

• Evidence for $\Sigma \rightarrow \rho \mu^+ \mu^-$ with 3 fb⁻¹ [PHYS.REV.LETT.120, 221803 (2018)]:

Excess with 4.1σ significance:

$${\cal B}(\Sigma\!
ightarrow
ho\mu^+\mu^-) = (2.2^{1.8}_{-1.3}) imes 10^{-8}$$

HyperCP excess [PRL(94)021801] not confirmed

< □ > < □ > < □ > < □ > < □ > < □ >

- 31

Rare strange decays

• Search for $K^0_{
m S}
ightarrow \mu^+ \mu^-$ with 3 fb⁻¹ [EUR. PHYS. J. C, 77 10 (2017) 678]:

Compatible with background only:

$${\cal B}({\cal K}^0_{\rm S} o \mu^+\mu^-) < 0.8 imes 10^{-9}$$
 at 90% C.L.

• Evidence for $\Sigma \rightarrow \rho \mu^+ \mu^-$ with 3 fb⁻¹ [PHYS.REV.LETT.120, 221803 (2018)]:

Excess with 4.1σ significance:

$${\cal B}(\Sigma\!
ightarrow
ho\mu^+\mu^-)=(2.2^{1.8}_{-1.3}) imes10^{-8}$$

HyperCP excess [PRL(94)021801] not confirmed

Exploring also other modes: $K^0_S \rightarrow \ell^+ \ell^- \ell^+ \ell^-$, $K^0_S \rightarrow \pi^0 \mu^+ \mu^-$, Λ decays...

LHCb major upgrade for Run 3, could go to 300 fb^{-1} in HL-LHC!

 $b
ightarrow s\gamma$ $\sigma_{
m stat}(\mathcal{A}^{\Delta}, lpha_{\gamma}, \mathcal{A}_{
m T}^{
m Im, 2}) < 1\%$ syst. dominated explore also $b
ightarrow d\gamma$

Future prospects [Physics case for an LHCb Upgrade II]

LHCb major upgrade for Run 3, could go to 300 fb^{-1} in HL-LHC!

 $b \rightarrow s\gamma$ $\sigma_{
m stat}(\mathcal{A}^{\Delta}, lpha_{\gamma}, \mathcal{A}_{
m T}^{
m Im, 2}) < 1\%$ syst. dominated explore also $b \rightarrow d\gamma$

$$\begin{split} & B^0_s \to \mu^+ \mu^- \\ & \sigma(\mathcal{B}) \sim 1.8\%(\mathrm{stat}), \sim 4\%(\mathrm{syst}) \\ & \sigma(\frac{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}{\mathcal{B}(B^0 \to \mu^+ \mu^-)}) \sim 10\% \text{ stat. limited} \\ & \sigma(\tau^{\mathrm{eff}}_{\mu^+ \mu^-}) \sim 2\% \text{ and CP(t) analyses!} \end{split}$$

Future prospects [Physics case for an LHCb Upgrade II]

LHCb major upgrade for Run 3, could go to 300 fb^{-1} in HL-LHC!

 $b
ightarrow s\gamma$ $\sigma_{
m stat}(\mathcal{A}^{\Delta}, lpha_{\gamma}, \mathcal{A}_{
m T}^{
m Im,2}) < 1\%$ syst. dominated explore also $b
ightarrow d\gamma$

$$\begin{split} & B^0_s \to \mu^+ \mu^- \\ & \sigma(\mathcal{B}) \sim 1.8\%(\mathrm{stat}), \sim 4\%(\mathrm{syst}) \\ & \sigma(\frac{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}{\mathcal{B}(B^0 \to \mu^+ \mu^-)}) \sim 10\% \text{ stat. limited} \\ & \sigma(\tau^{eff}_{\mu^+ \mu^-}) \sim 2\% \text{ and CP(t) analyses!} \end{split}$$

 $b \rightarrow s \ell^+ \ell^-$

Yield	Run 1 result	$9{ m fb}^{-1}$	$23{ m fb}^{-1}$	$50{ m fb}^{-1}$	$300{ m fb}^{-1}$
$B^+ \rightarrow K^+ e^+ e^-$	$254 \pm 29[274]$	1120	3300	7500	46000
$B^0\!\rightarrow K^{*0}e^+e^-$	111 ± 14 [275]	490	1400	3300	20000
$B_s^0 ightarrow \phi e^+ e^-$	_	80	230	530	3300
$\Lambda_b^0 ightarrow pKe^+e^-$	_	120	360	820	5000
$B^+ \! ightarrow \pi^+ e^+ e^-$	_	20	70	150	900

28 / 29

- 4 回 ト 4 三 ト 4 三 ト

Summary

Rare FCNC decays provide clean observables to test the SM

- C_7 well constrained but still NP possible in $C_7' \rightarrow$ photon polarisation
- $\bullet\,$ Scalar contributions constrained by $B^0_s\!\to\mu^+\mu^-$ but room for NP
- Tensions wrt SM in both $b \rightarrow s\ell^+\ell^-$ differential BR and angular observables possibly pointing to NP in C_9 or C_9 and C_{10}
- Also in hadronic-free R_K and $R_{K^{*0}}$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Summary

Rare FCNC decays provide clean observables to test the SM

- $\bullet~C_7$ well constrained but still NP possible in $C_7' \rightarrow$ photon polarisation
- $\bullet\,$ Scalar contributions constrained by $B^0_s\!\to\mu^+\mu^-$ but room for NP
- Tensions wrt SM in both $b \rightarrow s\ell^+\ell^-$ differential BR and angular observables possibly pointing to NP in C_9 or C_9 and C_{10}
- Also in hadronic-free R_K and $R_{K^{*0}}$

Exciting times in front of us

- Updating results and exploring new modes to confirm the anomalies: *b*-baryons, $b \rightarrow d\ell^+ \ell^-$, charm, strange...
- Theory community input most welcome!
- Squeezing recorded data and promising Upgrade 1 and 2 ahead

29 / 29

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Summary

Rare FCNC decays provide clean observables to test the SM

- $\bullet~C_7$ well constrained but still NP possible in $C_7' \rightarrow$ photon polarisation
- $\bullet\,$ Scalar contributions constrained by $B^0_s\!\to\mu^+\mu^-$ but room for NP
- Tensions wrt SM in both $b \rightarrow s\ell^+\ell^-$ differential BR and angular observables possibly pointing to NP in C_9 or C_9 and C_{10}
- Also in hadronic-free R_K and $R_{K^{*0}}$

Exciting times in front of us

- Updating results and exploring new modes to confirm the anomalies: *b*-baryons, $b \rightarrow d\ell^+ \ell^-$, charm, strange...
- Theory community input most welcome!
- Squeezing recorded data and promising Upgrade 1 and 2 ahead

Stay tuned!

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

29 / 29

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

BACK-UP

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Implications WS 2018 30 / 29

3

<ロト < 四ト < 三ト < 三ト

The LHCb detector [JINST3 (2008) S08005]

Huge production of heavy flavour hadrons (all of them!) Very good momentum and vertex resolution Excellent μ identification Neutral particle identification and energy measurement $\beta \rightarrow 2 \rightarrow 2 \rightarrow 2$

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Photon polarisation in $B^0 ightarrow K^{*0} e^+ e^-$ at low q^2

 $B^0 \to K^{*0} e^+ e^-$ dominated by photon pole at low $q^2 \to$ sensitivity to photon polarisation

$$A_{\mathrm{T}}^{(2)} = -0.23 \pm 0.23 \pm 0.05 \ A_{\mathrm{T}}^{\mathrm{Im}} = +0.14 \pm 0.22 \pm 0.05$$

Compatible with $C'_7/C_7 = 0$ but room for improvement

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

Implications WS 2018 32 / 29

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Photon polarisation in radiative baryon decays

• Angular analysis of $\Lambda^0_b \to \Lambda \gamma$:

$$\frac{d\Gamma}{d\cos\theta_{\gamma}} \propto 1 - \alpha_{\gamma} P_{A_{b}^{0}} \cos\theta_{\gamma}$$
$$\frac{d\Gamma}{d\cos\theta_{p}} \propto 1 - \alpha_{\gamma} \alpha_{p,1/2} \cos\theta_{p}$$

▶
$$P_{A_b^0} = (0.06 \pm 0.07)$$
 [Phys. Lett. B 724 (2013) 27]
▶ $\alpha_{p,1/2} = (0.642 \pm 0.013)$ [PDG]

Carla Marin (carla.marin@cern.ch)

Implications WS 2018 33 / 29

Differential Branching Ratios in $b \rightarrow s \ell^+ \ell^-$ decays

JHEP 10 (2015) 034

• Trend not observed so far in $b \rightarrow d\ell^+ \ell^-$ but precision is lower:

34 / 29

Angular observables in $b \rightarrow s \ell^+ \ell^-$

$$\frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \,\mathrm{d}\vec{\Omega}} = \frac{9}{32\pi} \bigg[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K + F_\mathrm{L} \cos^2 \theta_K \\ + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2 \theta_K \cos 2\theta_l \\ - F_\mathrm{L} \cos^2 \theta_K \cos 2\theta_l + S_3 \sin^2 \theta_K \sin^2 \theta_l \cos 2\phi \\ + S_4 \sin 2\theta_K \sin 2\theta_l \cos \phi + S_5 \sin 2\theta_K \sin \theta_l \cos \phi \\ + \frac{4}{3} A_{\mathrm{FB}} \sin^2 \theta_K \cos \theta_l + S_7 \sin 2\theta_K \sin \theta_l \sin \phi \\ + S_8 \sin 2\theta_K \sin 2\theta_l \sin \phi + S_9 \sin^2 \theta_K \sin^2 \theta_l \sin 2\phi \bigg]$$

35 / 29

イロト イヨト イヨト イヨト 二日

Angular moments of the decay $\Lambda_b^0 \rightarrow \Lambda \mu^+ \mu^-$ [JHEP 09 (2010) 142

$$\begin{split} \frac{\mathrm{d}^5\Gamma}{\mathrm{d}\vec{\Omega}} &= \frac{3}{32\pi^2} \Big(\left(K_1 \sin^2 \theta_\ell + K_2 \cos^2 \theta_\ell + K_3 \cos \theta_\ell \right) + \\ \left(K_4 \sin^2 \theta_\ell + K_5 \cos^2 \theta_\ell + K_6 \cos \theta_\ell \right) \cos \theta_b + \\ \left(K_7 \sin \theta_\ell \cos \theta_\ell + K_8 \sin \theta_\ell \right) \sin \theta_b \cos \left(\phi_b + \phi_\ell \right) + \\ \left(K_9 \sin \theta_\ell \cos \theta_\ell + K_{10} \sin \theta_\ell \right) \sin \theta_b \sin \left(\phi_b + \phi_\ell \right) + \\ \left(K_{11} \sin^2 \theta_\ell + K_{12} \cos^2 \theta_\ell + K_{13} \cos \theta_\ell \right) \cos \theta_+ \\ \left(K_{14} \sin^2 \theta_\ell + K_{15} \cos^2 \theta_\ell + K_{16} \cos \theta_\ell \right) \cos \theta_b \cos \theta + \\ \left(K_{17} \sin \theta_\ell \cos \theta_\ell + K_{18} \sin \theta_\ell \right) \sin \theta_b \sin \left(\phi_b + \phi_\ell \right) \cos \theta + \\ \left(K_{19} \sin \theta_\ell \cos \theta_\ell + K_{20} \sin \theta_\ell \right) \sin \theta_b \sin \left(\phi_b + \phi_\ell \right) \cos \theta + \\ \left(K_{21} \cos \theta_\ell \sin \theta_\ell + K_{22} \sin \theta_\ell \right) \sin \phi_\ell \sin \theta + \\ \left(K_{23} \cos \theta_\ell \sin \theta_\ell + K_{26} \sin \theta_\ell \right) \sin \phi_\ell \cos \theta_b \sin \theta + \\ \left(K_{27} \cos \theta_\ell \sin \theta_\ell + K_{28} \sin \theta_\ell \right) \cos \phi_\ell \cos \theta_b \sin \theta + \\ \left(K_{29} \cos^2 \theta_\ell + K_{30} \sin^2 \theta_\ell \right) \sin \theta_b \sin \phi_b \sin \theta + \\ \left(K_{31} \cos^2 \theta_\ell + K_{32} \sin^2 \theta_\ell \right) \sin \theta_b \sin \phi_b \sin \theta + \\ \left(K_{33} \sin^2 \theta_\ell \right) \sin \theta_b \sin \left(2\phi_\ell + \phi_b \right) \sin \theta + \\ \left(K_{34} \sin^2 \theta_\ell \right) \sin \theta_b \sin \left(2\phi_\ell + \phi_b \right) \sin \theta \Big) \,. \end{split}$$

Carla Marin (carla.marin@cern.ch)

Rare Decays measurements

3

Angular and CP asymmetries in $D^0 \rightarrow hh\mu^+\mu^-$: [Phys. Rev. D 96, 055008 (2017)]:

Search for the rare $\Lambda_c^+ \rightarrow p \mu^+ \mu^-$ [PHYS. REV. D 97, 091101 (2018)]: • No signal outside the ϕ and ω regions

 $\mathcal{B}(\Lambda_c^+ \to p \mu^+ \mu^-) < 7.7 \times 10^{-8}$ at 90% C.L.

3