A gauged horizontal SU(2) symmetry and R_K

Diego Guadagnoli
CNRS, LAPTh Annecy

Based on work with M. Reboud and O. Sumensari
Several references on horizontal symmetries for B anomalies

E.g.

[Crivellin, D’Ambrosio, Heeck, PRD2015]
[Alonso, Cox, Han, Yanagida, PRD2017]
[Cline, Martin Camalich, PRD2017]

However, theory arguments quite distant from the one pursued here
$b \to s$ anomalies’ basic challenge

- $R_K \approx 0.75$

$O(15-25\%)$ effects in $j_{q\ell}$

ℓ ℓ

D. Guadagnoli, A gauged horizontal SU(2) and R_K
$b \rightarrow s$ anomalies’ basic challenge

- $R_K \approx 0.75$

At the same time:

- $\Delta M_s \approx (\Delta M_s)_{SM}$

O(15-25%) effects in

$$\begin{array}{c}
\text{j}_q & & \text{j}_e \\
b & & s \\
\ell & & \ell \\
\text{NP} & & \\
\end{array}$$

Small corrections to

$$\begin{array}{c}
\text{j}_q & & \text{j}_q \\
b & & b \\
s & & s \\
\text{NP} & & \\
\end{array}$$

D. Guadagnoli, A gauged horizontal SU(2) and R_K
$b \to s$ anomalies’ basic challenge

- $R_K \approx 0.75$

At the same time:

- $\Delta M_s \approx (\Delta M_s)_{\text{SM}}$

- $\ell \to \ell' + X < \text{current limits}$

$O(15-25\%)$ effects in

\[j_q \rightarrow j_e \]

small corrections to

\[j_q \rightarrow j_q \]

and small corrections to

\[j_e \rightarrow j_e \]

D. Guadagnoli, A gauged horizontal SU(2) and R_K
The challenge in short

large enough \(j_q \) \(j_e \) yet \(j_q \) \(j_q \) \&\& \(j_e \) \(j_e \) small enough

D. Guadagnoli, A gauged horizontal SU(2) and \(R_K \)
• The challenge in short

large enough yet small enough

\[j_q \quad j_e \quad \text{yet} \quad j_q \quad j_q \quad \&\& \quad j_e \quad j_e \]

• This is potentially a problem when

\[j_q \quad j_e \quad i.e. \text{when the semi-lep. 4-f structure arises from } Z'\text{-like NP} \]

D. Guadagnoli, A gauged horizontal SU(2) and \(R_K \)
Leptoquark-like NP

Take

$q \rightarrow LQ$

$\ell \rightarrow LQ$

D. Guadagnoli, A gauged horizontal SU(2) and R_K
Take q_ℓ then q_ℓ is tree

D. Guadagnoli, A gauged horizontal SU(2) and R_K
Take

$q \ell \rightarrow \ell q$

then j_q is tree

but j_q is loop-suppressed

(at least for “genuine” LQs [Dorsner et al., LQ review])

D. Guadagnoli, A gauged horizontal SU(2) and R_κ
Can one accomplish a mechanism for suppressing flavour-changing

\[J_q \otimes J_q \quad \&\& \quad J_\ell \otimes J_\ell \]

within gauge extensions?
A gauged horizontal SU(2)

- Place the two heavier generations of each fermion

\[\mathcal{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix} \quad \text{w/} \quad f = u_L, d_L, \ell_L, \nu_L, \]

or RH counterparts

D. Guadagnoli, A gauged horizontal SU(2) and R_K
A gauged horizontal SU(2)

- Place the two heavier generations of each fermion in a doublet
\[\mathcal{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix} \]
with \(f = u_L, d_L, \ell_L, \nu_L, \) or RH counterparts

- Consider a new SU(2) interaction for each such doublet
\[\delta \mathcal{L} = g \sum_{\mathcal{F}} \mathcal{F}_L \vec{r} \cdot \vec{G} \mathcal{F}_L + \text{RH counterpart} \]
A gauged horizontal SU(2)

- Place the two heavier generations of each fermion in a doublet \(\mathcal{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix} \) with \(f = u_L, d_L, \ell_L, \nu_L \), or RH counterparts.

- Consider a new SU(2) interaction for each such doublet

\[
\delta \mathcal{L} = g \sum_{\mathcal{F}} \bar{\mathcal{F}}_L \cdot \mathcal{G} \mathcal{F}_L + \text{RH counterpart}
\]

- Integrate out horizontal bosons

\[
\delta \mathcal{L}_{\text{eff}} = -\sum_{\mathcal{F}, \mathcal{F}', a} \frac{g_L^2}{2M_G^2} \left(\bar{\mathcal{F}}_L \gamma^\mu \tau^a \mathcal{F}_L \right) \left(\bar{\mathcal{F}}'_L \gamma^\mu \tau^a \mathcal{F}'_L \right)
\]

D. Guadagnoli, A gauged horizontal SU(2) and \(R_K \)
Basic argument

- Doublets \(\mathcal{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix} \) aren't yet in the mass basis.

Rotate as: \(\mathcal{F} = U_\mathcal{F} \hat{\mathcal{F}} \) mass eigenbasis

D. Guadagnoli, A gauged horizontal SU(2) and \(R_k \)
Basic argument

- Doublets $\mathcal{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix}$ aren't yet in the mass basis.

Rotate as: $\mathcal{F} = U_\mathcal{F} \hat{\mathcal{F}}$

mass eigenbasis

- How does \mathcal{L}_{eff} change?

$$\delta \mathcal{L}_{\text{eff}} \propto \frac{1}{2 M_G^2} \left(\hat{\mathcal{F}}_L U_{\mathcal{F}}^\dagger \gamma^\mu \tau^a U_{\mathcal{F}} \hat{\mathcal{F}}_L \right) \left(\hat{\mathcal{F}}'_L U_{\mathcal{F'}}^\dagger \gamma^\mu \tau^a U_{\mathcal{F'}} \hat{\mathcal{F}}'_L \right)$$

D. Guadagnoli, A gauged horizontal SU(2) and R_κ
Consider terms with $\mathcal{F} = \mathcal{F}'$

$$
\delta \mathcal{L}_{\text{eff}} \propto \frac{1}{2 M_G^2} \text{Tr} \left(\tilde{\mathcal{F}}_L U_{\mathcal{F}}^\dagger \gamma^\mu \tau^a U_{\mathcal{F}} \tilde{\mathcal{F}}_L \right) \text{Tr} \left(\tilde{\mathcal{F}}'_L U_{\mathcal{F}}^\dagger, \gamma^\mu \tau^a U_{\mathcal{F}}, \tilde{\mathcal{F}}'_L \right)
$$
Consider terms with $\mathcal{F} = \mathcal{F}'$

If G_a degenerate

Rotations can be traded for G_a basis redefinition

$\mathcal{F} = \mathcal{F}'$ terms
flavour-diag. in all generality

\[
\delta \mathcal{L}_\text{eff} \propto \frac{1}{2 M_{G_a}^2} \left(\mathcal{F}_L U_{\mathcal{F}}^\dagger \gamma^\mu \tau^a U_{\mathcal{F}} \mathcal{F}_L \right) \left(\mathcal{F}'_L U_{\mathcal{F}'}^\dagger \gamma^\mu \tau^a U_{\mathcal{F}'} \mathcal{F}'_L \right)
\]
\[\delta \mathcal{L}_{\text{eff}} \propto \frac{1}{2 M_{G_a}^2} (\tilde{\mathcal{F}}_L \gamma^\mu \tau^a U \mathcal{F} \gamma^\mu \tau^a U \mathcal{F} \hat{\mathcal{F}}_L) \]

- Consider terms with \(\mathcal{F} = \mathcal{F}' \)

If \(G_a \) degenerate

Rotations can be traded for \(G_a \) basis redefinition

\(\mathcal{F} = \mathcal{F}' \) terms
flavour-diag. in all generality

- Our currents of interest: \(\hat{j}_q \otimes \hat{j}_q \), \(\hat{j}_\ell \otimes \hat{j}_\ell \)
would be flavour-diagonal in all generality

D. Guadagnoli, A gauged horizontal SU(2) and \(R_k \)
Consider terms with $\mathcal{F} = \mathcal{F}'$

If G_a degenerate

Rotations can be traded for G_a basis redefinition

$\mathcal{F} = \mathcal{F}'$ terms
flavour-diag. in all generality

Our currents of interest: $J_q \otimes J_q$, $J_\ell \otimes J_\ell$

would be flavour-diagonal in all generality

For the original argument
(in unrelated context) see:
Cahn, Harari, NPB1980

D. Guadagnoli, A gauged horizontal SU(2) and R_K
But

- Mixing beneath the EWSB scale has to involve all generations

 Contributions to meson mixings & leptonic decays not exactly zero

D. Guadagnoli, A gauged horizontal SU(2) and R_K
But

• Mixing beneath the EWSB scale has to involve all generations

 Contributions to meson mixings & leptonic decays not exactly zero

• Contributions suppressed by powers of $1^{st} - (2^{nd} \text{ or } 3^{rd})$ mixing
 So they are “small”

D. Guadagnoli, A gauged horizontal SU(2) and R_K
But

- Mixing beneath the EWSB scale has to involve all generations

 Contributions to meson mixings & leptonic decays not exactly zero

- Contributions suppressed by powers of 1^{st} – 2^{nd} or 3^{rd} mixing

 So they are “small”

- But processes like $K^0 - \bar{K}^0$ mixing and $\mu \rightarrow 3e$ very constraining

 Is “small” small enough?
Scenario 0: degenerate G_a masses

D. Guadagnoli, A gauged horizontal SU(2) and R_K
Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\mathcal{F} = U_\mathcal{F} \hat{\mathcal{F}}$ to 3 generations

- *It is these* U_{3x3} *that are unitary*

Then $\text{CKM} = (U_{UL})^\dagger U_{DL}$
Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\mathcal{F} = U_\mathcal{F} \hat{\mathcal{F}}$ to 3 generations
- It is these U_{3x3} that are unitary
 Then $\text{CKM} = (U_{UL})^\dagger U_{DL}$
- Taking $U_{DL} = 1$ \Rightarrow $K^0 - \bar{K}^0$ constraint disappears

D. Guadagnoli, A gauged horizontal SU(2) and R_K
Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\mathcal{F} = U_\mathcal{F} \hat{\mathcal{F}}$ to 3 generations

- *It is these* U_{3x3} *that are unitary*

 Then $\text{CKM} = (U_{UL})^\dagger U_{DL}$

- *Taking* $U_{DL} = 1$ \[\rightarrow\] *$K^0 - \bar{K}^0$ constraint disappears*

 but $U_{UL} = \text{CKM}^\dagger$ \[\rightarrow\] *$D^0 - \bar{D}^0$ mixing $100 \times$ exp limit*
Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\mathcal{F} = U_{\mathcal{F}} \hat{\mathcal{F}}$ to 3 generations

- It is these $U_{3 \times 3}$ that are unitary

Then $\text{CKM} = (U_{UL})^\dagger U_{DL}$

- Taking $U_{DL} = 1$ \(\Rightarrow\) $K^0 - \bar{K}^0$ constraint disappears

- But $U_{UL} = \text{CKM}^\dagger$ \(\Rightarrow\) $D^0 - \bar{D}^0$ mixing $100 \times$ exp limit

- Still exploring whether, with different $U_{UL,DL}$ assumptions, scenario 0 fulfils all main constraints:

\[\begin{align*}
&\text{CKM} \\
&\text{small } K^0 - \bar{K}^0 \\
&\text{small } D^0 - \bar{D}^0 \\
&R_K \text{ as measured}
\end{align*} \]

D. Guadagnoli, A gauged horizontal SU(2) and R_K
Besides, several ways to generalize the idea that will fulfil all constraints.

Examples:

(i) non-degenerate G_a masses

(ii) non-zero (but small) 1^{st} – $(2^{nd} & 3^{rd})$ gen. mixing terms
Scenario 1: split G_a masses

- Take one mass split from the other two, e.g.:

\[m_{G_1} = m_{G_2} \ll m_{G_3} \]
Scenario 1: split G_a masses

- Take one mass split from the other two, e.g.:
 \[m_{G_1} = m_{G_2} \ll m_{G_3} \]

- Minus:
 With such pattern, one has to forsake the initial symmetry
Scenario 1: split G_a masses

- Take one mass split from the other two, e.g.:
 \[m_{G_1} = m_{G_2} \ll m_{G_3} \]

- **Minus:**
 With such pattern, one has to forsake the initial symmetry

- **Plus:** All data explained at one stroke
 - R_K & Co.
Scenario 1: split G_a masses

- **Take one mass split from the other two, e.g.:**
 \[m_{G_1} = m_{G_2} \ll m_{G_3} \]

- **Minus:**
 With such pattern, one has to forsake the initial symmetry

- **Plus:** All data explained at one stroke
 - R_K & Co.
 - ΔM_s ok, if somewhat $< \text{SM}$
 - $B \to K \bar{\nu}\nu$ shift small, due to underlying SU(2) sym.
 - Small shifts to $\tau \to \ell \nu\nu$ & $D^0 \to \mu\mu$
 - Small effects in di-muon tails [Greljo, Marzocca, EPJC2017]

D. Guadagnoli, A gauged horizontal SU(2) and R_K
Scenario 1: predictions

\[\delta C_{9,10}^{\tau \tau} = -\delta C_{9,10}^{\mu \mu} \]
Scenario 1: predictions

\[\delta C_{9,10}^{\tau\tau} = -\delta C_{9,10}^{\mu\mu} \]

Shifts to \(BR(B_{(s)} \rightarrow (K) \tau\tau) \) \(\leftrightarrow \) \(R_K \) shift
Scenario 1: predictions

1. \(\delta C_{9,10}^{\tau\tau} = -\delta C_{9,10}^{\mu\mu} \) → \(\text{Shifts to } BR(B_{(s)} \rightarrow (K) \tau\tau) \) \(R_K \) shift

2. LFV-mode correlations
Scenario 1: predictions

1. \(\delta C_{9,10}^{\tau \tau} = -\delta C_{9,10}^{\mu \mu} \) → Shifts to \(BR(B_s \rightarrow K \tau \tau) \)

2. LFV-mode correlations

Excluded at 90\% CL

\[\mathcal{B}(B \rightarrow K \mu^\tau \tau^-) \]

\[\mathcal{B}(B \rightarrow K \mu \mu \mu) \]

\[\mathcal{B}(B \rightarrow K \mu \tau) \]
Scenario 1: predictions

1. \(\delta C_{9,10}^{\tau \tau} = -\delta C_{9,10}^{\mu \mu} \)

Shifts to \(BR(B_{(s)} \rightarrow (K) \tau \tau) \) ↔ \(R_K \) shift

2. LFV-mode correlations

Note: \(1.3 \times 10^{-8} \lesssim B(B \rightarrow K\mu^+\tau^-) + B(B \rightarrow K\mu^-\tau^+) \lesssim 5.2 \times 10^{-6} \)
Conclusions / Outlook

- I discussed a Z-like setup that accomplishes:

 \[j_q \otimes j_\ell \]

 (for \(R_K \))

 yet

 \[j_q \otimes j_q \]
 \[j_\ell \otimes j_\ell \]

 (\(\Delta M_s \) && leptonic LFV constraints)

D. Guadagnoli, A gauged horizontal SU(2) and \(R_K \)
I discussed a Z’-like setup that accomplishes:

- **large** \(j_q \otimes j_e \) (for \(R_K \))
- **yet** small
 - \(j_q \otimes j_q \) & \(j_e \otimes j_e \)
 - \(\Delta M_s \) & leptonic LFV constraints

through a symmetry

D. Guadagnoli, A gauged horizontal SU(2) and \(R_K \)
I discussed a Z’-like setup that accomplishes:

- Large $j_q \otimes j_e$ (for R_K)
- Small $j_q \otimes j_q$ & $j_e \otimes j_e$ (ΔM_s & leptonic LFV constraints)

through a symmetry

- The SU(2) case implies automatically no gauge anomalies
Conclusions / Outlook

I discussed a Z’-like setup that accomplishes:

- Large $j_q \otimes j_\ell$ (for R_K) yet small $j_q \otimes j_q$ & $j_\ell \otimes j_\ell$ (ΔM_s & leptonic LFV constraints)

through a symmetry

- The SU(2) case implies automatically no gauge anomalies

A larger group would require extra matter

But maybe it would help solve extra problems?

D. Guadagnoli, A gauged horizontal SU(2) and R_K