A gauged horizontal SU(2) symmetry and R_K

Diego Guadagnoli CNRS, LAPTh Annecy

Based on work with M. Reboud and O. Sumensari

Several references on horizontal symmetries for B anomalies

E.g.

[Crivellin, D'Ambrosio, Heeck, PRD2015]

[Alonso, Cox, Han, Yanagida, PRD2017]

[Cline, Martin Camalich, PRD2017]

However, theory arguments quite distant from the one pursued here

b → s anomalies' basic challenge

• $R_{\kappa} \approx 0.75$

O(15-25%) effects in

\$------

b → s anomalies' basic challenge

• $R_{\kappa} \approx 0.75$

O(15-25%) effects in

 j_q j_ℓ

4......

At the same time:

• $\Delta M_s \approx (\Delta M_s)_{SM}$

small corrections to

$$j_q$$
 j_q j_q

b → s anomalies' basic challenge

• $R_{\kappa} \approx 0.75$

O(15-25%) effects in

 j_q j_ℓ

At the same time:

• $\Delta M_{\rm S} \approx (\Delta M_{\rm S})_{\rm SM}$

ℓ → ℓ' + X
 current limits

small corrections to

$$j_q$$
 s j_q

and small corrections to

Z' - like NP

The challenge in short

large enough small enough j_q j_q j_q j_q j_q j_q j_q

Z' - like NP

The challenge in short

large enough

small enough

yet

This is potentially a problem when

i.e. when the semi-lep. 4-f structure arises from Z'-like NP

Leptoquark-like NP

Take

Leptoquark-like NP

Take

$$j_q$$
 then j_q j_e is tree

Leptoquark-like NP

Take

(at least for "genuine" LQs [Dorsner et al., LQ review])

Can one accomplish

a mechanism for suppressing

flavour-changing $j_q \otimes j_q \otimes k \otimes j_\ell \otimes j_\ell$

within gauge extensions?

A gauged horizontal SU(2)

Place the two heavier generations of each fermion

in a doublet
$$\mathcal{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix}$$
 w/ $f = u_L, d_L, \ell_L, v_L,$ or RH counterparts

A gauged horizontal SU(2)

Place the two heavier generations of each fermion

in a doublet
$$\mathfrak{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix}$$
 w/ $f = u_L, d_L, \ell_L, v_L$, or RH counterparts

Consider a new SU(2) interaction for each such doublet

$$\delta \mathcal{L} = g \sum_{\mathfrak{T}} \bar{\mathfrak{T}}_L \vec{\mathfrak{T}} \cdot \vec{\mathcal{G}} \, \mathfrak{T}_L + RH \, counterpart$$

A gauged horizontal SU(2)

Place the two heavier generations of each fermion

in a doublet
$$\mathfrak{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix}$$
 w/ $f = u_L, d_L, \ell_L, \nu_L$, or RH counterparts

Consider a new SU(2) interaction for each such doublet

$$\delta \mathcal{L} = g \sum_{\mathfrak{T}} \bar{\mathfrak{T}}_L \vec{\mathfrak{T}} \cdot \vec{\mathcal{G}} \, \mathfrak{T}_L + RH \, counterpart$$

Integrate out horizontal bosons

$$\delta \mathcal{L}_{eff} = -\sum_{\mathcal{F},\mathcal{F}',a} \frac{g_L^2}{2M_{G_a}^2} (\bar{\mathcal{F}}_L \, \gamma^{\mu} \tau^a \, \mathcal{F}_L) (\bar{\mathcal{F}}'_L \, \gamma^{\mu} \tau^a \, \mathcal{F}'_L)$$

• Doublets $\mathfrak{F}\equiv \begin{pmatrix} f_2\\f_3 \end{pmatrix}$ aren't yet in the mass basis. Rotate as: $\mathfrak{F}=U_{\mathfrak{F}}$

• Doublets $\mathfrak{F} \equiv \begin{pmatrix} f_2 \\ f_3 \end{pmatrix}$ aren't yet in the mass basis.

Rotate as: $\mathcal{F} = U_{\mathcal{F}}(\hat{\mathcal{F}})$

mass eigenbasis

• How does $\mathscr{L}_{ ext{eff}}$ change?

$$\delta \mathcal{L}_{eff} \propto \frac{1}{2 M_{G_a}^2} \left(\hat{\bar{\mathcal{F}}}_L \ U_{\mathcal{F}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}} \ \hat{\mathcal{F}}_L \right) \left(\hat{\bar{\mathcal{F}}}_L^{\prime} \ U_{\mathcal{F}^{\prime}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}^{\prime}} \ \hat{\mathcal{F}}_L^{\prime} \right)$$

$$\delta \mathcal{L}_{eff} \propto \frac{1}{2 M_{G_a}^2} \left(\hat{\bar{\mathcal{F}}}_L \ U_{\mathcal{F}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}} \ \hat{\mathcal{F}}_L \right) \left(\hat{\bar{\mathcal{F}}}_L^{\prime} \ U_{\mathcal{F}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}} \ \hat{\mathcal{F}}_L^{\prime} \right)$$

• Consider terms with $\mathfrak{F} = \mathfrak{F}'$

$$\delta \mathcal{L}_{eff} \propto \frac{1}{2 M_{G_a}^2} \left(\hat{\bar{\mathcal{F}}}_L U_{\mathcal{F}}^{\dagger} \gamma^{\mu} \tau^a U_{\mathcal{F}} \hat{\mathcal{F}}_L \right) \left(\hat{\bar{\mathcal{F}}}_L^{\prime} U_{\mathcal{F}}^{\dagger} \gamma^{\mu} \tau^a U_{\mathcal{F}} \hat{\mathcal{F}}_L^{\prime} \right)$$

• Consider terms with $\mathfrak{F} = \mathfrak{F}'$

If
$$G_a$$
 degenerate

Rotations can be traded for G_a basis redefinition

$$\mathcal{F} = \mathcal{F}'$$
 terms flavour-diag. in all generality

$$\delta \mathcal{L}_{eff} \propto \frac{1}{2 M_{G_a}^2} \left(\hat{\bar{\mathcal{F}}}_L \ U_{\mathcal{F}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}} \ \hat{\mathcal{F}}_L \right) \left(\hat{\bar{\mathcal{F}}}_L^{\prime} \ U_{\mathcal{F}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}} \ \hat{\mathcal{F}}_L^{\prime} \right)$$

Consider terms with $\mathfrak{F} = \mathfrak{F}'$

If
$$G_a$$
 degenerate

Rotations can be traded

for
$$G_a$$
 basis redefinition
$$\mathcal{F} = \mathcal{F}' \text{ terms}$$
flavour-diag. in all generality

Our currents of interest: $j_q \otimes j_q$, $j_{\varrho} \otimes j_{\varrho}$ would be flavour-diagonal in all generality

$$\delta \mathcal{L}_{eff} \propto \frac{1}{2 M_{G_a}^2} \left(\hat{\bar{\mathcal{F}}}_L \ U_{\mathcal{F}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}} \ \hat{\mathcal{F}}_L \right) \left(\hat{\bar{\mathcal{F}}}_L^{\prime} \ U_{\mathcal{F}}^{\dagger} \ \boldsymbol{\gamma}^{\mu} \boldsymbol{\tau}^a \ U_{\mathcal{F}} \ \hat{\mathcal{F}}_L^{\prime} \right)$$

Consider terms with $\mathfrak{F} = \mathfrak{F}'$

If
$$G_a$$
 degenerate

Rotations can be traded

for G_a basis redefinition $\mathcal{F} = \mathcal{F}' \text{ terms}$ flavour-diag. in all generality

Our currents of interest: $j_q \otimes j_q$, $j_{\ell} \otimes j_{\ell}$ would be flavour-diagonal in all generality

> For the original argument (in unrelated context) see: Cahn, Harari, NPB1980

 Mixing beneath the EWSB scale has to involve all generations

Contributions to meson mixings & leptonic decays not exactly zero

 Mixing beneath the EWSB scale has to involve all generations

Contributions to meson mixings & leptonic decays not exactly zero

Contributions suppressed by powers of 1st – (2nd or 3rd) mixing
 So they are "small"

 Mixing beneath the EWSB scale has to involve all generations

Contributions to meson mixings & leptonic decays not exactly zero

- Contributions suppressed by powers of 1st (2nd or 3rd) mixing
 So they are "small"
- But processes like $K^0 \overline{K}{}^0$ mixing and $\mu \to 3e$ very constraining

Is "small" small enough?

Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\, \Im = U_{\, \mathcal{F}} \, \hat{\mathcal{F}} \,$ to 3 generations
- It is these U_{3x3} that are unitary Then $CKM = (U_{UL})^{\dagger} U_{DL}$

Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\, \Im = U_{\mathcal{F}} \, \hat{\mathcal{F}} \,$ to 3 generations
- It is these U_{3x3} that are unitary Then $CKM = (U_{UL})^{\dagger} U_{DL}$
- Taking $U_{DL} = 1$

 $K^0 - \overline{K}^0$ constraint disappears

Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\, \Im = U_{\mathcal{F}} \, \hat{\mathcal{F}} \,$ to 3 generations
- It is these U_{3x3} that are unitary Then $CKM = (U_{UL})^{\dagger} U_{DL}$
- Taking $U_{DL} = 1$ $K^0 \overline{K}^0$ constraint disappears
 - but $U_{UL} = CKM^{\dagger}$ $D^0 \overline{D}^0$ mixing $100 \times exp$ limit

Scenario 0: degenerate G_a masses

- Need to generalize our 2-generation relation $\, \Im = U_{\, \mathcal{F}} \, \hat{\mathcal{F}} \,$ to 3 generations
- It is these U_{3x3} that are unitary Then $CKM = (U_{UL})^{\dagger} U_{DL}$
- Taking $U_{DL} = 1$ $K^0 \overline{K}^0$ constraint disappears
 - but $U_{UL} = CKM^{\dagger}$ $D^{0} \overline{D}^{0}$ mixing $100 \times exp$ limit
- Still exploring whether, with different U_{UL,DL} assumptions, scenario 0 fulfils all main constraints:

CKM Small Small

Besides, several ways to generalize the idea that will fulfil all constraints.

Examples:

- (i) non-degenerate G_a masses
- (ii) non-zero (but small) $1^{st} (2^{nd} \& 3^{rd})$ gen. mixing terms

Take one mass split from the other two, e.g.:

$$m_{G_1} = m_{G_2} \ll m_{G_3}$$

• Take one mass split from the other two, e.g.:

$$m_{G_1} = m_{G_2} \ll m_{G_3}$$

Minus:

With such pattern, one has to forsake the initial symmetry

• Take one mass split from the other two, e.g.:

$$m_{G_1} = m_{G_2} \ll m_{G_3}$$

- Minus:
 With such pattern, one has to forsake the initial symmetry
- Plus: All data explained at one stroke
 - R_K & Co.

Take one mass split from the other two, e.g.:

$$m_{G_1} = m_{G_2} \ll m_{G_3}$$

- Minus:
 With such pattern, one has to forsake the initial symmetry
- Plus: All data explained at one stroke
 - R_K & Co.
 - ΔM_s ok, if somewhat < SM
 - $B \rightarrow K vv$ shift small, due to underlying SU(2) sym.
 - Small shifts to $\tau \rightarrow \ell \ \nu \nu$ & $D^0 \rightarrow \mu \mu$
 - Small effects in di-muon tails [Greljo, Marzocca, EPJC2017]

$$0 \delta C_{9,10}^{\tau\tau} = -\delta C_{9,10}^{\mu\mu} \Box$$

Shifts to $BR(B_{(s)} \rightarrow (K) \tau \tau)$

LFV-mode correlations

$$0 \delta C_{9,10}^{\tau\tau} = -\delta C_{9,10}^{\mu\mu} \Box$$

Shifts to $BR(B_{(s)} \rightarrow (K) \tau \tau)$

 R_{κ} shift

2 LFV-mode correlations

$$0 \delta C_{9,10}^{\tau\tau} = -\delta C_{9,10}^{\mu\mu} \Box$$

Shifts to $BR(B_{(s)} \rightarrow (K) \tau \tau)$

LFV-mode correlations

10⁻¹⁰ $\mathcal{B}(\tau \rightarrow \mu \mu \mu)$ 10⁻¹⁶ 10⁻⁸ 10^{-9} 10^{-7} 10^{-6} $\mathcal{B}(B \to K \mu \tau)$

Note: $1.3 \times 10^{-8} \lesssim \mathcal{B}(B \to K \mu^+ \tau^-) + \mathcal{B}(B \to K \mu^- \tau^+) \lesssim 5.2 \times 10^{-6}$

• I discussed a Z'-like setup that accomplishes:

large
$$j_q \otimes j_\ell$$
 yet $j_q \otimes j_q$ small $j_q \otimes j_q \otimes j_\ell \otimes j_\ell$ (for R_{κ}) (ΔM_s && leptonic LFV constraints)

• I discussed a Z'-like setup that accomplishes:

through a symmetry

• I discussed a Z'-like setup that accomplishes:

through a symmetry

The SU(2) case implies automatically no gauge anomalies

I discussed a Z'-like setup that accomplishes:

The SU(2) case implies automatically no gauge anomalies

