LHCb γ measurements with $B \rightarrow D^{(*)}K^{(*)}$

Susan Haines

University of Cambridge

on behalf of the LHCb collaboration

Implications of LHCb measurements and future prospects – October 2018

CKM angle γ

- For many years, least well measured Unitarity Triangle angle; now entering precision measurement era
- Can measure at tree level with $B \rightarrow DX$ decays

- Exploit weak phase difference γ between $b \rightarrow u$ and $b \rightarrow c$ transitions
- Theoretically clean but room for NP JHEP 01 (2014) 051

PRD 92 033002 (2015)

At LHCb, perform

time-integrated measurements

 $B^- \to D^{(*)}K^{(*)-}, B^0 \to DK^{*0}, B^0 \to DK^+\pi^-, B^- \to DK^-\pi^+\pi^-$

PLB 557 198 (2003)

• GLW analysis ($D \rightarrow CP$ eigenstate) PLB 253 483 (1991) PLB 265 172 (1991)

- ADS analysis ($D \rightarrow$ flavour specific) PRL 78 3257 (1997) PRD 63 036005 (2001)
- GGSZ analysis (*D* → multibody) <u>PRD 68 054018 (2003)</u> <u>PRD 70 072003 (2004)</u>
- Dalitz analysis ($B \rightarrow$ multibody) PRD 79 051301(R) (2009) PRD 80 092002 (2009)

• time-dependent measurements – see <u>Simon Stemmle</u>'s talk $B_s^0 \rightarrow D_s^{\mp} K^{\pm}, B^0 \rightarrow D^{\mp} \pi^{\pm}$ PRD 37 3186 (1988) <u>ZPC 54 653 (1992)</u> NPB 671 459 (2003)

combination of LHCb γ measurements

The LHCb experiment

- Designed for study of particles containing b or c
 - High precision tracking and vertexing
 - Momentum resolution (0.5 1.0)%
 - Impact parameter resolution $(15 + 29 / p_T) \mu m$
 - RICH detectors for hadron PID ($K \pi$ separation)

GGSZ analysis of $B^- \rightarrow DK^-$, $D \rightarrow K_S^0 h^+ h^-$

- Determine γ using *D* decay to three-body selfconjugate $K_S^0 \pi^+ \pi^-$ or $K_S^0 K^+ K^-$ final state
- One solution for γ in [0, π]
- Requires knowledge of resonant structure of $D \rightarrow K_S^0 h^+ h^-$ decay across phase space

$$A_{B^{+}} \propto \bar{A}_{f} + r_{B}e^{i(\delta_{B}+\gamma)}A_{f}$$
$$A_{B^{-}} \propto A_{f} + r_{B}e^{i(\delta_{B}-\gamma)}\bar{A}_{f}$$

• Observables: $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$, $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$

Model-independent method: bin *D* decay phase space according to $D^0 - \overline{D}^0$ strong phase difference

2*N* bins ($i \in [-N, N]$, $i \neq 0$) i > 0 for $m^2_- > m^2_+$

 Yield in bin *i* $N_{\pm i}^{+} = h_{B^{+}} \left[F_{\mp i} + (x_{+}^{2} + y_{+}^{2}) F_{\pm i} + 2\sqrt{F_{i}F_{-i}}(x_{+}c_{\pm i} - y_{+}s_{\pm i}) \right]$ $N_{\pm i}^{-} = h_{B^{-}} \left[F_{\pm i} + (x_{-}^{2} + y_{-}^{2}) F_{\mp i} + 2\sqrt{F_{i}F_{-i}}(x_{-}c_{\pm i} + y_{-}s_{\pm i}) \right]$ (*c_i*, *s_i*) strong phase difference measurements from CLEO-c
 PRD 82 112006 (2010)

• Results with Run 2 data (2 fb⁻¹ at $\sqrt{s} = 13$ TeV):

$$x_{-} = (9.0 \pm 1.7 \pm 0.7 \pm 0.4) \times 10^{-2}$$
$$y_{-} = (2.1 \pm 2.2 \pm 0.5 \pm 1.1) \times 10^{-2}$$
$$x_{+} = (-7.7 \pm 1.9 \pm 0.7 \pm 0.4) \times 10^{-2}$$
$$v_{+} = (-1.0 \pm 1.9 \pm 0.4 \pm 0.9) \times 10^{-2}$$

First observation of *CP* violation in $B^- \rightarrow DK^-$, $D \rightarrow K_S^0 h^+ h^-$

• Combine with Run 1 results (3 fb⁻¹ at $\sqrt{s} = 7,8$ TeV) to give constraint on γ :

$$\gamma = (80^{+10}_{-9})^{\circ}$$
GGSZ

Run 1: $\gamma = (62^{+15}_{-14})^{\circ}$ 2015 & 2016: $\gamma = (87^{+11}_{-12})^{\circ}$

Combination of LHCb measurements Combine tree-level LHCb γ measurements:

B decay	D decay	Method	Ref.	$\mathrm{Dataset}^{\dagger}$	Status since last combination [3]	
$B^+ \to DK^+$	$D \to h^+ h^-$	GLW	[14]	Run 1 & 2	Minor update	
$B^+ \to DK^+$	$D \to h^+ h^-$	ADS	[15]	Run 1	As before	
$B^+ \to DK^+$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[15]	Run 1	As before	
$B^+ \to DK^+$	$D \to h^+ h^- \pi^0$	$\mathrm{GLW}/\mathrm{ADS}$	[16]	Run 1	As before	
$B^+ \to DK^+$	$D ightarrow K_{ m s}^0 h^+ h^-$	GGSZ	[17]	Run 1	As before	
$B^+ \to DK^+$	$D \to K^0_{\rm S} h^+ h^-$	GGSZ	[18]	$\operatorname{Run}2$	New	
$B^+ \to DK^+$	$D \to K^0_{\rm S} K^+ \pi^-$	GLS	[19]	$\operatorname{Run} 1$	As before	
$B^+ \to D^* K^+$	$D \to h^+ h^-$	GLW	[14]	$\mathrm{Run}\;1\;\&\;2$	Minor update	
$B^+ \to D K^{*+}$	$D \to h^+ h^-$	$\mathrm{GLW}/\mathrm{ADS}$	[20]	$\mathrm{Run}\;1\;\&\;2$	Updated results	
$B^+ \to D K^{*+}$	$D \to h^+ \pi^- \pi^+ \pi^-$	$\mathrm{GLW}/\mathrm{ADS}$	[20]	$\operatorname{Run}1\&2$	New	
$B^+ \to D K^+ \pi^+ \pi^-$	$D ightarrow h^+ h^-$	GLW/ADS	[21]	Run 1	As before	
$B^0 \to DK^{*0}$	$D \to K^+ \pi^-$	ADS	[22]	$\operatorname{Run} 1$	As before	
$B^0\!\to DK^+\pi^-$	$D \to h^+ h^-$	$\operatorname{GLW-Dalitz}$	[23]	$\operatorname{Run} 1$	As before	
$B^0 \to DK^{*0}$	$D \to K^0_{\rm s} \pi^+ \pi^-$	GGSZ	[24]	Run 1	As before	
$B^0_s \to D^\mp_s K^\pm$	$D_s^+\!\to h^+h^-\pi^+$	TD	[25]	Run 1	Updated results	
$B^0 \! \to D^{\mp} \pi^{\pm}$	$D^+\!\to K^+\pi^-\pi^+$	TD	[26]	Run 1	New - Se	e <u>Simon Stemmle</u> 's tall

^{\dagger} Run 1 corresponds to an integrated luminosity of $3 \, \text{fb}^{-1}$ taken at centre-of-mass energies of 7 and 8 TeV. Run 2 corresponds to an integrated luminosity of 2 fb^{-1} taken at a centre-of-mass energy of 13 TeV.

Frequentist approach

Auxiliary inputs from HFLAV, CLEO and LHCb Susan Haines

- Most precise determination of γ from a single experiment
- World average: $\gamma = (73.5^{+4.2}_{-5.1})^{\circ}$
- Indirect constraints: $\gamma = (65.6^{+1.0}_{-3.4})^{\circ}$

Outlook: exploiting existing data

Run 2 updates

- $B^- \to DK^-$
 - $D \to h^+ h^-$ (ADS), $D \to h^+ \pi^- \pi^+ \pi^-$, $D \to h^+ h^- \pi^0$, $D \to K^0_S K^+ \pi^-$
- $B^0 \rightarrow DK^{*0}/B^0 \rightarrow DK^+\pi^-$
 - $D \rightarrow h^+h^-, D \rightarrow K_S^0h^+h^-$
- $B^- \rightarrow DK^-\pi^+\pi^-$
 - $D \rightarrow h^+ h^-$
- New possible decay modes
 - $B^- \rightarrow DK^-\pi^+\pi^-, B^- \rightarrow DK^{*-}$
 - $D \rightarrow K_S^0 h^+ h^-$
 - $B^- \rightarrow D^* h^-$
 - $D \rightarrow K_S^0 h^+ h^-, D \rightarrow h^+ h^-$
 - $D \rightarrow K^+ K^- \pi^+ \pi^-, D \rightarrow K_S^0 \pi^+ \pi^- \pi^0 \dots$

(+ time-dependent analyses)

Outlook: future data

Outlook: future data

- Expect main experimental systematic uncertainties to scale with data/simulation sample sizes
 - Production/instrumentation asymmetries
 - Understanding of backgrounds/control modes and simulation
- For GGSZ, uncertainties from CLEO-c (c_i, s_i) inputs will become limiting in upgrade era (σ(γ) ~ 2°)

- Ongoing cooperation between BESIII and LHCb to measure (c_i, s_i) and other charm inputs BESIII-LHCb workshop 2018
- Constrain with other decay modes e.g. $B^0 \rightarrow DK^+\pi^-, D \rightarrow K_S^0\pi^+\pi^-$

Outlook: further sensitivity gains

- New possible decay modes?
 - High multiplicity *B* and *D* decay modes
 - Modes with neutrals, e.g. $D \rightarrow K_S^0 \pi^0$ (Upgrade Ib onwards)
 - γ from B_c or b-baryons
- New strategies?
 - Model-independent unbinned (Fourier analysis) GGSZ approach
 - Unified approach simultaneous GLW/ADS/GGSZ

arXiv:1804.05597

Conclusions

 Combination of LHCb results, including new GGSZ measurement, gives most precise determination of γ from a single experiment

$$\gamma = (74.0^{+5.0}_{-5.8})^{\circ}$$
PRELIMINARY

- Coming soon:
 - Further updates including Run 2 data set
 - Studies of new decay modes

Now entering era of precision γ measurement

• Expect $\sigma(\gamma) = 1.5^{\circ}$ in 2025; $\sigma(\gamma) = 0.35^{\circ}$ with LHCb Upgrade II

Backup: Combination of LHCb measurements

