What Mixing and Lifetimes can tell us about NP

Matthew Kirk

(based on work with L. Di Luzio, D. King, A. Lenz, T. Rauh)

LHCb Implications 2018 17 October 2018

What NP?

- Various $b \rightarrow s11$ anomalies
- Suggests NP that generates effective operator $(\overline{b}\,s)(\overline{l}\,l)$
- What else does this lead to?

General approach

- $(\bar{b} s)(\bar{l} l)$ effective operator
 - Rare decays (why we are using it)
 - Mixing double insertion allows $(\bar{b}\,s)(\bar{b}\,s)$ operator at one loop in EFT

Specific Model – Z'

- $(\bar{b}\,s)(\bar{l}\,l)$ effective operator from $\bar{b}\,s$ and $\bar{l}\,l$ coupling
 - Rare decays (why we are using it)
 - Mixing $\bar{b}s$ double insertion allows $(\bar{b}s)(\bar{b}s)$ operator at tree level

Meson mixing introduction

- Quantum effects allow the transition meson ↔ antimeson
- So flavour eigenstate not mass eigenstate
- Diagonalise Hamiltonian to find two mass states, with different mass and width

Mixing in the SM

$$\frac{\partial}{\partial t} \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix} = \left(\hat{M} - \frac{i}{2} \hat{\Gamma} \right) \begin{pmatrix} B_s \\ \overline{B}_s \end{pmatrix}$$

$$M_{12}^{q} = \frac{G_F^2}{16\pi^2} \lambda_t^2 M_W^2 S_0(x_t) \hat{\eta}_B \frac{\langle \overline{B}_q | Q_1 | B_q \rangle}{2M_{B_q}}$$

$$\Gamma_{12}^{q} = -\frac{G_F^2 m_b^2}{24\pi M_{B_q}} \sum_{x=u} \sum_{c} \sum_{y=u} \left[G_1^{q,xy} \langle \overline{B}_q | Q_1 | B_q \rangle - G_2^{q,xy} \langle \overline{B}_q | Q_2 | B_q \rangle \right] + \mathcal{O}(1/m_b)$$

Status ~ 2015

- HFLAV (LHCb, CDF) exp average = $17.757 \pm 0.021 \,\mathrm{ps}^{-1}$
- SM (1511.09466) prediction = $18.3 \pm 2.7 \,\mathrm{ps}^{-1}$

New lattice

- Fermilab / MILC (1602.03560) produce new lattice calculation of $f_{B_s}\sqrt{B}$
 - Essentially calculation of $\langle Q \rangle$ where Q is SM mixing operator
- Much higher precision than previous lattice → dominates FLAG average

$$f_{B_c}\sqrt{B} : 270\pm16 \text{ MeV} \rightarrow 274\pm8 \text{ MeV}$$

New SM

- $f_{B_s}\sqrt{B}$ contributes ~90% uncertainty in SM prediction
 - So more precision here very welcome
- With FNAL/MILC results, get new SM prediction

$$(1712.06572) = 20.01 \pm 1.25 \,\mathrm{ps}^{-1}$$

→ 1.8 sigma discrepancy

What does this tell us about NP?

- Taking the new FLAG average (i.e. basically the FNAL/MILC result), we find $\Delta M_s^{\rm SM} > \Delta M_s^{\rm exp}$
- Problem for many NP models, which have $\Delta M_s^{\text{NP}} > \Delta M_s^{\text{SM}}$

Limits on Z' model (2015)

Limits on Z' model (2017)

Limits on Z' model (2017)

Limits on Z' model (2017)

Stronger B_s mixing constraints

- Roughly a factor 5 in mass limits
- Actually a generic feature of the new result (if $\kappa > 0$)

$$\frac{\Delta M_s^{\text{Exp}}}{\Delta M_s^{\text{SM}}} = \left| 1 + \frac{\kappa}{\Lambda_{\text{NP}}^2} \right| \implies \frac{\Lambda_{\text{NP}}^{2017}}{\Lambda_{\text{NP}}^{2015}} = \sqrt{\frac{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2015}} - 1}{\frac{\Delta M_s^{\text{Exp}}}{(\Delta M_s^{\text{SM}} - 2\delta\Delta M_s^{\text{SM}})^{2017}} - 1}} \simeq 5.2$$

Loopholes...

Complex Coupling

- As soon as we have complex couplings
 - → new sources of CP violation
 - → new constraints
- For B_s mixing, mixing induced CP asymmetry

Complex Coupling

- As soon as we have complex couplings
 - → new sources of CP violation
 - → new constraints
- For B_s induce

RH quark coupling

• Adding RH coupling allows negative contribution to ΔM_s

$$\mathcal{L}_{Z'}^{\text{eff}} \supset -\frac{1}{2M_{Z'}^2} \left[(\lambda_{23}^Q)^2 \left(\bar{s}_L \gamma_\mu b_L \right)^2 + (\lambda_{23}^d)^2 \left(\bar{s}_R \gamma_\mu b_R \right)^2 + 2\lambda_{23}^Q \lambda_{23}^d (\bar{s}_L \gamma_\mu b_L) (\bar{s}_R \gamma_\mu b_R) + \text{h.c.} \right].$$

Cross check of lattice result

- Since $f_{B_s}\sqrt{B}$ so important, and lattice average currently dominated by FNAL/MILC, what cross checks can be done?
- Use QCD/HQET sum rules to compute B
- Independent determination

Sum rule calculation

- Have done all operators that contribute to ΔM and $\Delta \Gamma$ at dim6 (4 quark, no derivatives)
- Also ongoing now, include m_s effects with expansion up to m_s^2
- Just bag parameter, not decay constant
 - Have to use another source for that

Sum rule calculation

- 0812.4522 (Grozin, Lee) master 3 loop integrals
- 1606.06054 (Grozin, Klein, Mannel, Pivovarov) calculation of SM operator (ΔM only)
- 1711.02100 (MK, Lenz, Rauh) all dim6 operators (lifetime and mixing)

B_d bag parameters

B_s bag parameters

Sum rule precision

- Comparable to lattice
 - And major contribution coming from the matching
 - Improvable (go to NNLO) with current technology
 - Possibility to beat them at their own game ;-)

- While not directly applicable in the minimal explanation for $R_{K^{\prime}}$, meson lifetimes can be strong bounds on NP as well.
- E.g. allow some NP in $(\overline{b}s)(\overline{c}c)$ gives LFU contribution to ΔC_9 (1701.09183)
- Strong bound from $\tau(B_s)/\tau(B_d)$

• While not directly applicable in the minimal explanation for R_K , meson lifetimes can be strong bounds on NP as well.

• E.g. allow some NP in $(\overline{b}s)(\overline{c}c)$ of to ΔC_9 (1701.09183)

• Strong bound from $\tau(B_s)/\tau(B_d)$

• LFU contribution to ΔC_9 worth further consideration (see Towards the discovery of new physics with lepton-universality ratios of $b \to s\ell\ell$ decays

Li-Sheng Geng, Benjamín Grinstein, Sebastian Jäger, Jorge Martin Camalich, Xiu-Lei Ren, Rui-Xiang Shi

(Submitted on 18 Apr 2017 (v1), last revised 20 Apr 2017 (this version, v2))

Are we overlooking Lepton Flavour Universal New Physics in $b \to s\ell\ell$?

Marcel Algueró, Bernat Capdevila, Sébastien Descotes-Genon, Pere Masjuan, Joaquim Matias

(Submitted on 22 Sep 2018)

- LFU contribution to ΔC_9 worth further consideration (see e.g. 1704.05446, 1809.08447)
- Follow up to 1701.09183 coming soon
- Looking at complex couplings and constraints from $B \rightarrow J/\psi K$
- Also examining full basis of $(\overline{b}s)(\overline{c}c)$ operators

Lifetime matrix elements

- Need matrix elements of contributing operators.
- In SM, there are 4 operators at dim6 (four quark, no derivatives)
- No lattice results since 2001 (hep-ph/0110124)

B lifetime bag parameters

D lifetime bag parameters

D lifetimes to test the HQE

- Experiment measures $\tau(D^+)/\tau(D^0)=2.536\pm0.019$
- Old SM prediction (1305.3588) was 2.2 ± 1.7
 - They (Lenz, Rauh) used $B=1\pm1/3$, $\epsilon=0\pm1/10$
- New prediction with sum rule calculation is $2.7^{+0.7}_{-0.8}$
 - Good agreement

D lifetimes to test the HQE

• Experiment measures $\tau(D^+)/\tau(D^0)=2.536\pm0.019$

Good convergence:

NLO QCD +28%, 1/mc -34%.

Good behaviour under scale

variation above about 1 GeV.

D lifetimes to test the HQE

• Experiment measures $\tau(D^+)/\tau(D^0)=2.536\pm0.019$

Good convergence:

NLO QCD +28%, 1/mc -34%.

Good behaviour under scale variation above about 1 GeV.

Thomas Rauh, CKM 2018

Sum rules conquer lifetimes

- Only game in town
 - Only state of the art for B mesons
 - Only alternative to vacuum saturation approximation for D mesons

Conclusions

- B mixing is and will be a very important constraint on any NP altering the b → s transition.
- If Fermilab-MILC result is confirmed, many NP models must be lighter than previously thought.
- For more general NP models, lifetimes can also be constraining → important to get lattice confirmation of lifetime matrix elements

Conclusions

• B mixing is altering th

SINCE YEARS OF BEGGING DID NOT HELP – IT'S TIME TO PROVOKE

it on any NP

Lifetimes are too heavy for lattice physicists!

The strongest lattice researcher alive

Arbitrary sum rule researcher

nodels must

 For more c constrainir lifetime ma

be lighter t

Matrix elements for lifetimes of HEAVY mesons

ion of

Conclusions

- B mixing is and will be a very important constraint on any NP altering the b → s transition.
- If Fermilab-MILC result is confirmed, many NP models must be lighter than previously thought.
- For more general NP models, lifetimes can also be constraining → important to get lattice confirmation of lifetime matrix elements

Extras

Effect of non-perturbative parameters on NP models

Source	$f_{B_s}\sqrt{\hat{B}}$	$\Delta M_s^{ m SM}$
HPQCD14 [132]	$(247 \pm 12) \text{ MeV}$	$(16.2 \pm 1.7) \mathrm{ps}^{-1}$
ETMC13 [133]	$(262 \pm 10) \text{ MeV}$	$(18.3 \pm 1.5) \mathrm{ps}^{-1}$
HPQCD09	$(266 \pm 18) \text{ MeV}$	$(18.9 \pm 2.6) \mathrm{ps}^{-1}$
FLAG17 [70]	$(274\pm8)~\mathbf{MeV}$	$\left (20.01 \pm 1.25) \mathbf{ps^{-1}} \right $
Fermilab16 72	$(274.6 \pm 8.8) \text{ MeV}$	$(20.1 \pm 1.5) \mathrm{ps}^{-1}$
HQET-SR [77] [136]	$(278^{+28}_{-24}) \text{ MeV}$	$(20.6^{+4.4}_{-3.4}) \mathrm{ps}^{-1}$
HPQCD06 [137]	$(281 \pm 20) \text{ MeV}$	$(21.0 \pm 3.0) \mathrm{ps}^{-1}$
RBC/UKQCD14 138	$(290 \pm 20) \text{ MeV}$	$(22.4 \pm 3.4) \mathrm{ps}^{-1}$
Fermilab11 139	$(291 \pm 18) \text{ MeV}$	$(22.6 \pm 2.8) \mathrm{ps}^{-1}$

HQET sum rules – D mixing

Vacuum saturation approximation

$$\langle B_s | (\overline{q} \Gamma b) (\overline{q} \Gamma b) | \overline{B_s} \rangle = \sum_{\text{all states}} \langle B_s | (\overline{q} \Gamma b) | X \rangle \langle X | (\overline{q} \Gamma b) | \overline{B_s} \rangle$$

$$pprox \langle B_s | (\overline{q} \Gamma b) | 0 \rangle \langle 0 | (\overline{q} \Gamma b) | \overline{B_s} \rangle$$

These then look like decay constants for meson to vacuum – extracted from experimental decay width

$$\langle B_s|(\overline{q}\Gamma b)(\overline{q}\Gamma b)|\overline{B}_s\rangle = B_{\Gamma}\langle B_s|(\overline{q}\Gamma b)|0\rangle\langle 0|(\overline{q}\Gamma b)|\overline{B}_s\rangle$$

Bag parameter