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What NP?
● Various              anomalies
● Suggests NP that generates effective operator 
● What else does this lead to?

b→s l l

(b s)(l l)
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General approach
●                effective operator

– Rare decays (why we are using it)
– Mixing – double insertion allows                   operator 

at one loop in EFT

(b s)(l l)

(b s)(b s)
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Specific Model – Z’
●                effective operator from       and      coupling

– Rare decays (why we are using it)
– Mixing –       double insertion allows                  

operator at tree level
(b s)(b s)

(b s)(l l) b s l l

b s
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Meson mixing introduction
● Quantum effects allow the transition meson  ↔ 

antimeson
● So flavour eigenstate not mass eigenstate
● Diagonalise Hamiltonian to find two mass states, with 

different mass and width



6

Mixing in the SM
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Status ~ 2015 
● HFLAV (LHCb, CDF) exp average =
● SM (1511.09466) prediction =

17.757±0.021 ps−1

18.3±2.7 ps−1

http://www.slac.stanford.edu/xorg/hflav/osc/PDG_2018/#DMS
https://arxiv.org/abs/1511.09466
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New lattice
● Fermilab / MILC (1602.03560) produce new lattice 

calculation of 
– Essentially calculation of        where Q is SM mixing 

operator
● Much higher precision than previous lattice  → 

dominates FLAG average

f B s√B  :  270±16  MeV→274±8  MeV

f B
s
√B

⟨Q⟩

https://arxiv.org/abs/1602.03560
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New SM
●              contributes ~90% uncertainty in SM prediction

– So more precision here very welcome
● With FNAL/MILC results, get new SM prediction

(1712.06572) =

 → 1.8 sigma discrepancy

f B
s
√B

20.01±1.25 ps−1

https://arxiv.org/abs/1712.06572
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What does this tell us about NP?
● Taking the new FLAG average (i.e. basically the FNAL/

MILC result), we find 
● Problem for many NP models, which have

ΔM s
SM

>ΔM s
exp

ΔM s
NP

>ΔM s
SM
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Limits on Z' model (2015)
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Limits on Z' model (2017)
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Limits on Z' model (2017)
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Limits on Z' model (2017)
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Stronger       mixing constraints
● Roughly a factor 5 in mass limits
● Actually a generic feature of the new result (if          )

⇒

Bs

κ>0
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Loopholes...
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Complex Coupling
● As soon as we have complex 

couplings 

 → new sources of CP 
violation

 → new constraints

● For      mixing, mixing 
induced CP asymmetry 

B s

PRELIMINARY
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RH quark coupling
● Adding RH coupling 

allows negative 
contribution to ΔM s

PRELIMINARY
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Cross check of lattice result
● Since               so important, 

and lattice average currently 
dominated by FNAL/MILC, 
what cross checks can be 
done?

● Use QCD/HQET sum rules to 
compute B

● Independent determination

f Bs√B
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Sum rule calculation
● Have done all operators that contribute to         and      

at dim6 (4 quark, no derivatives)
● Also ongoing now, include       effects with expansion up 

to 
● Just bag parameter, not decay constant

– Have to use another source for that

ΔM ΔΓ

ms
ms

2
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Sum rule calculation
● 0812.4522 (Grozin, Lee) – master 3 loop integrals
● 1606.06054 (Grozin, Klein, Mannel, Pivovarov) – 

calculation of SM operator (         only)
● 1711.02100 (MK, Lenz, Rauh) – all dim6 operators 

(lifetime and mixing)

ΔM

https://arxiv.org/abs/0812.4522
https://arxiv.org/abs/1606.06054
https://arxiv.org/abs/1711.02100
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    bag parametersBd
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    bag parametersBs
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Sum rule precision
● Comparable to lattice

– And major contribution coming from the matching
● Improvable (go to NNLO) with current technology

– Possibility to beat them at their own game ;-)
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Meson lifetimes for NP
● While not directly applicable in the minimal 

explanation for        , meson lifetimes can be strong 
bounds on NP as well.

● E.g. allow some NP in                  gives LFU contribution 
to           (1701.09183)

● Strong bound from

(b s)(c c)
ΔC9

τ(B s)/ τ(Bd)

RK

https://arxiv.org/abs/1701.09183
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Meson lifetimes for NP
● LFU contribution to           worth further consideration (see 

e.g. 1704.05446, 1809.08447)

                  

   

       

B→J /ψK

ΔC9

https://arxiv.org/abs/1704.05446
https://arxiv.org/abs/1809.08447
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Meson lifetimes for NP
● LFU contribution to           worth further consideration (see 

e.g. 1704.05446, 1809.08447)
● Follow up to 1701.09183 coming soon
● Looking at complex couplings and constraints from 

● Also examining full basis of                   operators

ΔC9

B→J /ψK

(b s)(c c)

https://arxiv.org/abs/1704.05446
https://arxiv.org/abs/1809.08447
https://arxiv.org/abs/1701.09183
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Lifetime matrix elements
● Need matrix elements of contributing operators.
● In SM, there are 4 operators at dim6 (four quark, no 

derivatives)
● No lattice results since 2001 (hep-ph/0110124)

https://arxiv.org/abs/hep-ph/0110124
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B lifetime bag parameters
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D lifetime bag parameters
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D lifetimes to test the HQE
● Experiment measures 
● Old SM prediction (1305.3588) was  

– They (Lenz, Rauh) used 
● New prediction with sum rule calculation is 

– Good agreement

τ(D+
)/ τ(D0

)=2.536±0.019

2.2±1.7

B=1±1 /3,ϵ=0±1 /10

2.7−0.8
+ 0.7

https://arxiv.org/abs/1305.3588
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D lifetimes to test the HQE
● Experiment measures 
● Old SM prediction (1305.3588) was  

– They (Lenz, Rauh) used 
● New prediction with sum rule calculation is 

– Good agreement

τ(D+
)/ τ(D0

)=2.536±0.019

2.2±1.7

B=1±1 /3,ϵ=0±1 /10

2.7−0.8
+ 0.7

Thomas Rauh, CKM 2018

https://arxiv.org/abs/1305.3588
https://indico.cern.ch/event/684284/contributions/2952448/
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Sum rules conquer lifetimes
● Only game in town

– Only state of the art for B mesons
– Only alternative to vacuum saturation 

approximation for D mesons
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Conclusions
● B mixing is and will be a very important constraint on any NP 

altering the b  s transition.→ 

● If Fermilab-MILC result is confirmed, many NP models must 
be lighter than previously thought.

● For more general NP models, lifetimes can also be 
constraining  important to get lattice confirmation of → 
lifetime matrix elements
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Extras
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Effect of non-perturbative 
parameters on NP models



  

HQET sum rules – D mixing



  

Vacuum saturation approximation
⟨Bs|(qΓb)(qΓb)|B s⟩= ∑

all states

⟨Bs|(qΓb)|X ⟩ ⟨X|(qΓb)|Bs⟩

                                  ≈⟨Bs|(qΓb)|0⟩ ⟨0|(qΓb)|Bs⟩

These then look like decay constants 
for meson to vacuum – extracted from 
experimental decay width

⟨Bs|(qΓb)(qΓ b)|B s⟩=BΓ ⟨Bs|(qΓb)|0⟩ ⟨0|(qΓb)|Bs⟩

Bag parameter
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