LHCb: Recent results on heavy ions

Shanzhen Chen, on behalf of the LHCb collaboration
Universita e INFN, Cagliari

Implications of LHCb measurements and future prospects
19th October 2018
LHCb heavy ion modes

- **pp collider:** 2010-2018, $\sqrt{s_{NN}} = 2.76, 5, 7, 8, 13$ TeV, $L \approx 9$ fb$^{-1}$
- **pPb collider:** 2013 and 2016, $\sqrt{s_{NN}} = 5 \& 8.16$ TeV, $L \approx 2 \& 34$ nb$^{-1}$
- **PbPb collider:** 2015, $\sqrt{s_{NN}} = 5$ TeV, $L \approx 10 \mu$b$^{-1}$. Next run: end 2018

Timeline

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>JFMAMJJASOND</td>
<td>JFMAMJJASOND</td>
<td>JFMAMJJASOND</td>
<td>JFMAMJJASOND</td>
<td>JFMAMJJASOND</td>
<td>JFMAMJJASOND</td>
<td>JFMAMJJASOND</td>
</tr>
</tbody>
</table>

- **Fixed target mode:**
 - parasitic to collider mode,
 - inject noble gas into VELO,
 - use non-colliding bunches

![Graph showing proton on target (10^2) for different energies and years]

![Beam Energy Graph]

Shanzhen Chen

19 October 2018
LHCb heavy ion recent results

• Antiproton production in fixed-target configuration

• Charm production in fixed-target configuration

• Heavy flavour production in pPb collisions
 • $D^0@5.02\text{TeV}$: LHCb-PAPER-2017-015, JHEP (2017) 090
 • $\Lambda_{c^+}@5.02\text{TeV}$: LHCb-PAPER-2018-021, arXiv:1809.01404
 • $J/\psi@8.16\text{TeV}$: LHCb-PAPER-2017-014, PLB774 (2017) 159
 • $B^+, B^0, \Lambda_{b^0}@8.16\text{TeV}$: LHCb-CONF-2018-004
 • $\Upsilon(nS)@8.16\text{TeV}$: LHCb-PAPER-2018-035, arXiv:1810.07655

• Exclusive photonuclear J/ψ production in ultra-peripheral PbPb collisions @5TeV
 • LHCb-CONF-2018-003, see Paolo’s talk on Wednesday
Fixed-target mode setups at LHCb

- Noble gas injected in VELO = 4He, 20Ne, 40Ar, ...
- Access: $\sqrt{s_{NN}}$ in [69, 110] GeV, backward rapidity
- Fills the gap between SPS and RHIC energies

$$\sqrt{s_{NN}}^{SPS} \sim 20\text{GeV}, \sqrt{s_{NN}}^{LHCb-FT} \in [69,110]\text{GeV}, \sqrt{s_{NN}}^{RHIC} = 200\text{GeV}, \sqrt{s_{NN}}^{LHC} = 5\text{TeV}$$
$ar{p}$ production in fixed-target pHe collisions

- Antiproton/proton ratio known with great precision in cosmic rays
 - AMS02 (PRL 117, 091103 (2016))
 - PAMELA (JETP Letters 96 (2013) 621)
- Hint for a possible excess
- Flux prediction uncertainties in 10-100 GeV kinetic energy range: dominated by production cross-sections uncertainties
 - Need to reduce uncertainty
 - pHe scattering cross-section results can serve as external input
- \bar{p}-production in pHe collisions never directly measured
- LHCb in fixed-target mode: pioneer with well suited kinematics

\[\frac{\Phi_\bar{p}}{\Phi_p}\]

\[\text{Kinetic energy } T \text{ [GeV]}\]

\[\text{Uncertainty from: Cross-sections, Propagation, Primary slopes, Solar modulation}\]
\bar{p} production in fixed-target pHe collisions

- Data collected in 2016 in pHe collisions at $\sqrt{s_{NN}} = 110$ GeV
- Counting antiproton in (p, p_T) bins
- Access to range $12 \text{ GeV}/c < p < 110 \text{ GeV}/c$, $p_T > 0.4 \text{ GeV}/c$
- PID with 2 RICH detectors
- Account for background by residual gas
- Luminosity from pe^- elastic scattering
\(p \) production in fixed-target \(pHe \) collisions

- Compared with EPOS LHC, EPOS 1.99, QGSJET-II, QGSJETII-04m, Hijing, PYTHIA 6.4. ICRC ’17: difference summary by T. Pierog

- Uncertainties smaller than model spread

- EPOS LHC tuned on LHC collider data underestimates \(\bar{p} \)-production

- Unique and precise:
 - decisive contribution to shrink background uncertainties in dark matter searches in space

\[\text{LHCb} \]
\[pHe \rightarrow \bar{p} X \quad 0.4 < p_T < 0.7 \text{ GeV/c} \]
\[\sqrt{s} = 110 \text{ GeV} \]

\[\text{LHCb} \]
\[pHe \rightarrow \bar{p} X \quad 0.7 < p_T < 1.2 \text{ GeV/c} \]
\[\sqrt{s} = 110 \text{ GeV} \]

\[\text{LHCb} \]
\[pHe \rightarrow \bar{p} X \quad 1.2 < p_T < 2.8 \text{ GeV/c} \]
\[\sqrt{s} = 110 \text{ GeV} \]
Charm production in fixed-target \(p-A \) collisions

- Access to intrinsic charm via backward rapidity coverage
- Cover large Bjorken-\(x \) in the target

Valence-like intrinsic charm content in the nucleon

nPDF anti-shadowing region

Bjorken-\(x \) = fraction of the nucleon momentum carried by a parton
Charm production in fixed-target p-A collisions

- Data collected in 2016 in pHe collisions at $\sqrt{s_{NN}} = 86.6$ GeV
- Cross sections measured with $J/\psi \to \mu^+\mu^-$ and $D^0 \to K^-\pi^+$ decays
Charm production in fixed-target p-A collisions

- **J/ψ and D^0 inclusive cross sections in pHe @86.6 GeV**

$$\sigma_{J/\psi}^{86.6 \text{ GeV}} = 1225.6 \pm 62.0(\text{stat.}) \pm 81.6(\text{syst.}) \text{ nb/nucleon}$$

$$\sigma_{D^0}^{86.6 \text{ GeV}} = 156.0 \pm 4.6(\text{stat.}) \pm 12.3(\text{syst.}) \text{ \mu b/nucleon}$$

- **Scaling the D^0 cross-section with the global fragmentation ratio**

$$f(c \to D^0) = 0.542 \pm 0.024$$

$c\bar{c}$ production cross section can be obtained:

$$\sigma_{c\bar{c}}^{86.6 \text{ GeV}} = 287.8 \pm 8.5(\text{stat.}) \pm 25.7(\text{syst.}) \text{ \mu b/nucleon}$$

- **LHCb results in good agreement with NLO NRQCD fit (J/ψ, left) and NLO pQCD predictions ($c\bar{c}$, right) and other measurements**
Charm production in fixed-target p-A collisions

- J/ψ differential yields (pAr@110GeV) and cross-section (pHe@86.6GeV)

- HELAC-ONIA [EPJC 77:1 (2017)] predictions for pp (blue line) and pA (Green box) overlaid with measurement. HELAC-ONIA underestimate the J/ψ cross section (pHe) by a factor 1.78.

- Plain and dashed red lines: phenomenological parametrization [JHEP 1303(2013)122]. Good shape agreement with phenomenological predictions.
Charm production in fixed-target p-A collisions

- D^0 differential yields (pAr@110GeV) and cross-section (pHe@86.6GeV)

- HELAC-ONIA [EPJC 77:1 (2017)] predictions for pp (blue line) and pA (Green box) overlaid with measurement. HELAC-ONIA underestimate the D^0 cross section (pHe) by a factor 1.44.

- Good agreement in rapidity shapes between data and predictions

- No evidence of substantial valence-like intrinsic charm contribution
Proton-lead modes setups at LHCb

Ion = $^{208}_{82}$Pb

Forward region:
- $y^* = y_{lab} - 0.465$
- pPb: $1.5 < y < 4.0$

Backward region:
- $y^* = -(y_{lab} + 0.465)$
- Pbp: $-5.0 < y < -2.5$

2013 data taking: $\sqrt{s_{NN}} = 5.02$ TeV
- 1.1nb^{-1} (Fwd), 0.5nb^{-1} (Bwd)

2016 data taking: $\sqrt{s_{NN}} = 8.16$ TeV
- 13.6nb^{-1} (Fwd), 20.8nb^{-1} (Bwd)
Proton-lead collisions

• Allow us to study QGP in a barely explored regime
• Study of cold nuclear matter effects and their disentangling from QGP effects
• Nuclear effects quantified by nuclear modification factor:

\[
R_{pPb}(p_T, y^*) \equiv \frac{1}{A} \frac{d^2\sigma_{pPb}(p_T, y^*)/dp_Tdy^*}{d^2\sigma_{pp}(p_T, y^*)/dp_Tdy^*}, \quad A = 208
\]

where pp cross-sections at 5 TeV are from pp 5 TeV measurements, and pp cross-sections at 8.16 TeV are from interpolations with pp 2.76, 5, 7, 8, 13 TeV data
Prompt D^0 production in pPb at 5.02 TeV

- Reconstructed through $D^0 \rightarrow K^- \pi^+$ decays
- Simultaneous 2D fit to D^0 mass and impact parameter (IP)

Forward

<table>
<thead>
<tr>
<th>Candidates / (3 MeV/c^2)</th>
<th>$M(K^\pm \pi^\mp)$ [MeV/c^2]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data</td>
<td>Fit</td>
</tr>
</tbody>
</table>

Mass distribution:
Signal: Crystal Ball
Background: Linear

IP distribution:
Prompt signal: from simulation
D^0 from b: from simulation
Background: shape from sidebands
Prompt D^0 nuclear modification factor

- Strong suppression at forward rapidity ($\sim 30\%$),

- Backward rapidity: compatible with no suppression and hint of enhancement \rightarrow different nuclear effect in forward and backward regions

- At forward rapidity region also consistent with Colour Glass Condensate (CGC) models [Phys. Rev. D91 (2015) 114005, arXiv:1706.06728], with a proper saturation scale
Prompt D^0 nuclear modification factor

- Compare with J/ψ and $\psi(2S)$ results at 5 TeV
- Similar nuclear modification factor for J/ψ to D^0, \[
\frac{R_{pPb}(J/\psi)}{R_{pPb}(D^0)} \sim 1
\]
- More suppressed for $\psi(2S)$ to D^0
Prompt Λ_c^+ production in pPb at 5.02 TeV

- Reconstructed through $\Lambda_c^+ \rightarrow pK^-\pi^+$ decays

- Similar analysis strategy as D^0
Prompt Λ_c^+ production in pPb at 5.02 TeV

- Λ_c^+/D^0 similar in forward and backward directions
- Generally consistent with expectations from pp data $\Lambda_c^+/D^0 \sim 0.3$,
J/ψ production in pPb at 8.16 TeV

- 2016 pPb collision data, 8.16 TeV
- Prompt J/ψ and J/ψ-from-b are extracted by simultaneous fit of mass and pseudo-proper time: $t_Z = (Z_{J/ψ} - Z_{PV}) \times M_{J/ψ} / p_Z$

Mass distribution:
- Signal: Crystal Ball
- Background: exponential

tz distribution:
- Signal: $\delta(t_z)$ for prompt J/ψ;
- Exponential for J/ψ-from-b.
- Background: empirical function from sideband

Total yields:
- Prompt Forward: 3.8×10^5; Backward: 5.6×10^5
- From-b Forward: 6.7×10^4; Backward: 7.1×10^4
J/ψ differential cross-section

- The cross-sections as a function of y^*, integrated over the p_T
- Sizeable forward-backward asymmetry
Prompt J/ψ nuclear modification factor

- In Fwd: suppression at low p_T up to 50%, converging to unity at high p_T
- In Bwd: R_{pPb} closer to unity. Intriguing low values in Bwd at low p_T
- Overall agreement with theoretical models. Compatible with pPb 5 TeV results.

Models:
J/ψ-from-b nuclear modification factor

- In Fwd: suppression at low p_T up to 30%, converging to unity at high p_T
- In Bwd: $R_{p\text{Pb}}$ slightly above unity
- Overall agreement with theoretical models. Compatible with $p\text{Pb}$ 5 TeV results.

R_{p\text{Pb}} vs. p_T, Forward

- **R_{p\text{Pb}} vs. p_T, Backward**

- **R_{p\text{Pb}} vs. y^***

Model:

b-hadron production in pPb at 8.16 TeV

- **Exclusive decay modes:** $B^+ \rightarrow J/\psi K^+$, $B^+ \rightarrow D^0 \pi^+$, $B^0 \rightarrow D^- \pi^+$, $\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^-$

\[
\begin{array}{|c|c|c|}
\hline
\text{Decay} & \text{pPb} & \text{Pbp} \\
\hline
B^+ \rightarrow D^0 \pi^+ & 1943 \pm 58 & 1824 \pm 64 \\
B^+ \rightarrow J/\psi K^+ & 883 \pm 32 & 905 \pm 33 \\
B^0 \rightarrow D^- \pi^+ & 1155 \pm 39 & 886 \pm 34 \\
\Lambda_b^0 \rightarrow \Lambda_c^+ \pi^- & 484 \pm 24 & 397 \pm 23 \\
\hline
\end{array}
\]
b-hadron cross-sections

- B^+ cross-section studied in $J/\psi K^+$ and $D^0 \pi^+$ modes. Both modes consistent. Weighted average shown here.

- Similar p_T and y distributions for B^+, B^0 and Λ_b^0 hadrons.
b-hadron cross-section ratios

- Probing relative b-quark fragmentation into different b-hadrons

- B^0 / B^+ ratio independent of y and p_T, slightly above unity (isospin symmetry)

- $\Lambda_b^0 / B^0 \approx 40\%$, decreasing with p_T, no hint of strong rapidity dependence. Similar to results in LHCb pp data [JHEP 08 (2014) 143]

- Λ_b^0 / B^0 ratio reaches LEP data at high p_T, 0.20 ± 0.02 [arXiv:1612.07233]
B⁺ nuclear modification factors

- Pattern consistent with R_{pA} of D^0 hadron
- Significant suppression ($\approx 25\%$) in forward rapidity, suppression decreased at large p_T
- Consistent with unity at backward rapidity
Λ_b^0 and B^0 relative modification

• Ratio of R_{pA} between Λ_b^0 and B^0 hadrons

Forward rapidity: consistent with unity in all kinematic bins $\rightarrow b$-quark fragmentation function at forward rapidity similar to pp

Backward rapidity: hint of stronger suppression for Λ_b^0 compared with B^0. Demanding more statistics for a firm conclusion.
$\Upsilon(nS)$ production in $p\text{Pb}$ at 8.16 TeV

- Quarkonium: QCD hydrogen atom \rightarrow probe deconfinement in PbPb
- $\Upsilon(nS)$ suppression observed in PbPb by CMS and ALICE
- Observed additional suppression of $\Upsilon(2S,3S)$ at low-p_T also in $p\text{Pb}/\text{Pb}$ by LHC collaborations in Run 1, but statistics limited

LHCb Run-2: Factor 20 more luminosity in 2016 than in Run 1
- Mass spectra are fitted with double crystal ball functions
- Clear $\Upsilon(3S)$ signal in both forward and backward rapidity
ϒ(1S) and ϒ(2S) nuclear modification factor

- **ϒ(1S):** forward: suppressed by ~30%
- **ϒ(1S):** backward: compatible with unity within nPDF uncertainties
- **ϒ(2S):** additional suppression confirmed
- Double ratio: shadowing cancels
- Consistent with comovers model

MODELS:
\(\mathcal{R}_{\Upsilon(3S)/\Upsilon(1S)}^{(pPb|Pbp)/pp} = \frac{R(\Upsilon(nS))_{pPb|Pbp}}{R(\Upsilon(nS))_{pp}} \)

- An even larger suppression for \(\Upsilon(3S) \) observed
- Consistent with comovers model
\[\Upsilon(1S) \text{ to } J/\psi \text{-from-}b \text{ ratio} \]

- \(p_T \)-integrated \(\Upsilon(1S) \) to \(J/\psi \)-from-\(b \) similar in \(pp \) & in \(pPb/Pbp \):

- Small suppression indicate different suppression mechanism for quarkonia with different binding energies
Conclusions

- LHCb has strong capabilities to study heavy flavor in heavy ion collisions
- \bar{p} production in fixed-target pHe collisions
 - Valuable input to astrophysics community
- Charm production in fixed-target proton-nucleus collisions
 - No evidence of strong intrinsic charm contribution
- Heavy flavour production in pPb collisions
 - Tested heavy-flavour bound state hadronisation & fragmentation down to low-p_T
 - Tested different suppression mechanism for quarkonia with different binding energies
 - Nuclear suppressions in pPb forward: up to 50% at low-p_T for charm and 20-30% for beauty
- Many studies are ongoing with current heavy-ion programmes and in view of future upgrades
Backups
LHCb 5 TeV quarkonium results - J/ψ, $\psi(2S)$ and $\Upsilon(1S)$

- Candidates fully reconstructed from well identified muons
- Prompt J/ψ, $\psi(2S)$ and those from b decays separated using pseudo-proper decay time

Prompt J/ψ, $\psi(2S)$

- Significant suppression for J/ψ, even larger for $\psi(2S)$
- Modest suppression for non-prompt J/ψ, similar to $\Upsilon(1S)$

Backward rapidity

- No suppression for J/ψ and $\Upsilon(1S)$
- Unexpected large suppression for $\psi(2S)$, not described by E.loss and shadowing

Shanzhen Chen

19 October 2018