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ARIES Outline @

* Introduction to the Beam Position Measurement
— Symmetry in beam position monitoring
— Calibration methods to ensure a high measurement stability
— Single channel heterodyne receiver

* BPM electronics utilizing time-multiplexed electrode signals
— DESY: BPM electronics at HERA-e and FLASH
» Design principle introduced by R. Neumann

— CERN: LHC interlock BPM R&D

» Based on the thesis activities of Oskar Bjorkquist,
and with help of Irene Degl’Innocenti and Jan Posipil
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A,?,*Bs Introduction: A typical BPM setup @
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ARIES Beam Position Measurement @

* BPMs are based on a symmetric measurement setup

— Detect the beam asymmetry, i.e. the beam position,
> by a perfect symmetric arrangement of 2 identical read-out channels
» to suppress the common mode
> to simplify the normalization to the beam intensity
» Beam position signals: An AM signal with the bunch response as carrier

* Asymmetries in the BPM read-out system channels

— Will result in an (electronic) offset of the reported beam position
» can be tolerated and calibrated if the asymmetric effect does not change over
time
> Is often linked to tolerances of RF / analog electronic components, RF cables

and connectors, etc.

— Can also be design choices, e.g. different BPM electrodes or asymmetric
arrangement, different gains to electronically center a permanent large beam offset

* Time varying asymmetries result in uncontrollable position
offsets, and are a major limitation of the BPM performance!
— Caused by a variety of effects in the analog and RF signal
processing, e.g. ambient temperature, humidity, aging and radiation
effects of components

— Also external EM-fields (pulsed RF, kicker signals), or uncontrolled
grounding can break the symmetry
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ARIES Example: Aging of RF components @

RF connectors and coaxial cables also undergo aging effects!
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ARIES Online Calibration Methods @
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ARIES Single channel BPM: MPX Receiver @

Limiter

BP BP BP

Filter Filter Filter Y

courtesy J. Hinckson,
K. Unser, J. Bergoz

* Narrowband RF heterodyne receiver with multiplexed inputs:

— Downmix, demodulate and normalize the BPM signals

» Classical RF radio-receiver technology applied to process BPM signals

» Supplies the individual BPM electrode signals and the hor./ vert. position signals
— Single channel signal processing with T&H at the analog outputs

» Improves the stability due to drift of electronics components
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ARIEs  Time-multiplexed BPM signals @m
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JRies DESYs early MPX BPM System @

- delay-line pulse forming switched broadband track&hold
_n P circuit low-pass filter attenuator amplifier amplifier
il v

monitor

8-bit digital

"in-line" "in-line" output signal:
pickup signals beam displacement and intensity

\J /:p\ /;t\[gh\

up left right

* Developed and operated at the DESY HERA electron ring
— Every 48" 2 ns bucket filled (96 ns bunch-to-bunch distance)

e “Exported” to the Fermilab AO-Photoinjector test facility linac
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ARIEDESY MPX BPM Electronics @ FNAL I@;A

Delay Line Unit - -~ s ‘
1 (up) O—‘ -y . Yy Y=
Inputs for the -
iB»[FM M/A Com ———0 Output
o T-1000
electrodes
3 (left) O—‘

4 (right) O J
22.0+0.5 ns

ARIES Workshop — 12t-14™ November 2018: Time-multiplexed BPM signals Page 10



ARIES DESY FLASH MPX BPM System
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Jrles  DESY MPX BPM Electronics @

* 100 ns delay-line signal combination (2 electrodes)
— 80 m long 3/8” high quality coaxial cables

* 40 dB RF pre-amplifier to cover 15 pC single-bunch operation
— NF =3.3dB, 600 MHz BW
— Resolution <10 ym for single bunch operation >10 pC

* Analog electronics based on pyTCA RTM

— 600 MHz BW (-3 dB) & double-peak detector
> Ve peak min =5 mV

— Gain switching (RF step attenuator)
— 4 input channels and test pulse generators

* Commercial yTCA digitizer Struck SIS8300
— 10-ch, 125MS/s, 16-bit
— External RF synchronous 108 MHz clock
* Unfortunately: No long-term drift analysis data available, ...yet.

— However, this BPM technology is routinely and successfully used for
beam energy calibration, which is cross calibrated to the photon
energy of the FLASH FEL.
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ARIES

CERN LHC Interlock BPM R&D
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ARIES LHC Interlock BPM: Key Elements @
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e Stripline BPM
— 2 vertical and 2 horizontal, 120 mm long electrodes

* High isolation, balanced high-power signal combiner
* 4-stage delay-line based, comb (FIR) band-pass filter
e ADC digitizer and digital signal processing
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ARIEs  Stripline BPM Bunch Signals @
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* CST wakefield simulation and oscilloscope measurement
— 1.35el1 protons per bunch

— Measurement captured after ~70 m '2” Heliax cable
» Oscilloscope LeCroy Waverunner SDA 18000 (60 GS/s, 18 GHz BW)
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ARIEAmplitude-balanced Power Combiner @
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ARIES RF FIR Filter Theory

* 4x 2 ns delays: Mn]—p 27 2
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ARIEs High Isolation Power Combiner @
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ARIES Stripline PCB Comb BPF @m

e 1.35ell proton bunch via~70 m long coaxial cable
— Acquired at 60 GS/s with 18 GHz BW

e Stripline PCB prototype
— Center frequency off by ~5 %
— Substrate: Rogers RO4360G2 (g, = 6.15)

Voltage [V]
N o -

-

Time [ns]
LHC beam measurement of PCB filter at
1.35e11 bunch intensity.

% ﬂMMMMMW“

-60

Gain [dB]

First manufactured
prototype.

7 PCB layout and initial

a power divider design.

am s s s o e e S S e S e . .

Frequency [GHz]

7 Frequency response of PCB filter.
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ARIES Beam Measurements
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ARIEs LHC Doublet Bunches (Simulation) I@m
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ARIES Estimated Performance @
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* Meets the LHC interlock BPM resolution requirement

— <500 pm RMS bunch-by-bunch for a range of 5e9...2e11 ppb w/o gain switching!

— including a beam displacement range of 7.5 mm
* Keeps the reported mean value beam position over the entire bunch intensity range
* Operates also with 5+20 ns doublet bunches

— atareduced performance
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ARIES Summary @

* Single channel, time-multiplexed BPM electronics can be an
alternative to a multi-channel BPM read-out technique

— Requires empty RF buckets
* Time MPX BPM technologies are based on

— Precise, stable time delays utilizing high quality coaxial cables
and power combiners

— Low-pass integration or comb-style FIR band-pass filters in
connection with track&hold circuits, peak detectors, or fast
digitizers

* Time MPX BPMs performance is successfully demonstrated
In ring and linear accelerators
— DESY HERA-e, Fermilab AO-Photoinjector, DESY FLASH

— In future: CERN LHC interlock BPMs

* Long term drift stability could not yet be quantified: TBD!

— However, the concept omits the needs of online calibration or
channel switching schemas, thus appears to be more simple
and straightforward.
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ARIES Backup Slides... @‘m

Thank youl
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ARIESStripline electrodes: Characteristics @

* Coupled signal is dependent on geometry of electrode
* One can say that a certain impulse response z;(t) relates the
beam current i, (t) to the pickup voltage v,,(t) in the time

domain through convoluttion:

Vpy(t) = j ip(T)zp(t —1)dT

— 00

Beam current

Voltage [V]

ARIES Workshop — 12t-14™ November 2018: Time-multiplexed BPM signals Page 25



26

ARIES Stripline electrodes: Characteristics @

* ... Andin the frequency domain, a certain transfer
Impedance Z;(w) relates the beam current and the
pickup voltage through multiplication (ohms law):

Vou(@) = Zr(w)lp(w)

Beam current
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ot
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27
ARIES Stripline electrodes: Characteristics

* Given the beam current and the electrode
voltage signal, the transfer impedance can be
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ARIES

Wilkinson power divider

* ‘Typical’ choice of high isolation power divider (
+ Cheap and simple to manufacture g
- Poor bandwidth
- . ° 1 Freque;.:y [GHz]2 ” ’
0 TransmISSIOn . WPD irl'nplementeld in full FI.R filter
S ! ) —
é / Retection \/ E o ni VUn n nVu'vn vn
350 _. I\I.;.:}I I-I\_.:_-:'. ‘ J el |
» Isolation @ " ‘ ‘
] 05 1 Freque;;{ GHa 2 25 3 0 5 10 Tim::[ns] 20 25 30
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.. High isolation power combiner:
ARIES

How does the isolation work?

e ABalunis al:1transformer
— Signal amplitudes on primary and secondary are equal
* Primary and secondary signals are 180° out of phase
— Bal-Un: Balanced-Unbalanced transformer

Input signal (p1)

Output signal 2 (p3)

Output signal 1 (p2) | |

/

(] 05 1 15 2 25
Frequency [GHZz]

3
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4pies  High isolation power combiner: @
—LtoWw does the isolation work?

e Example: Assume the input signal at port 2
— All resistors are 50 Ohm

* The 180° phase shift of the balun forces the node at
port 3to receive zero voltage

— port 2-3 isolation

a2t 50 0 v=0

: éson

I8 sx0o

e |nput signal (port 2)
Output signal 1 (port 1) |
Qutput signal 2 (port 3)

-Port3 +

,Hod uowwod,
T Hcd

ul

-Port 1+
AN

Voltage [v.

02

04}

06

-Port2 +

08

,Ssuod indul,
‘€78 ¢ suod

—— Frequency [GHz]
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ARIES

Amplitude balanced power combiner:

Coaxial balun design

input
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.. Amplitude balanced power combiner: @
ARIES  Balun design X

« Second coax balances amplitudes, but balanced outputs are still
frequency dependent

Single coax balun Double coax balun
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+ Amplitude balanced power combiner:
ARIES  Baun design @

 Ferrite beads nearly remove frequency dependency

Ferrite loaded balun

0
2} : sm ]
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4 Balanced E
output 1
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S 8}
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3 -10 Balanced
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/IRiES Amplitude balanced power combiner: @

Balun design

Amplitude balance [521 [dB] - 531 [dB]) Phase balance [abs[phase[521]-phase[531]]

3 190
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ARIES Workshop — 12t-14™ November 2018: Time-multiplexed BPM signals Page 34



+._ Amplitude balanced power combiner: V
ARIES Balun design @

Ferrite loaded balun

» Coaxial cable based balun T T ] ]
Balun amplitude: I‘ S

» Cables covered in ferrites to 4 BAanced oumpt 1 -
prevent currents from flowing 6\
on the outside of coaxial jacket g ,|

lun amplitude:

e Produces a Very well 10} BBaaILaunc:d guigufz
performing amplitude balance

over a large frequency range
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ARIES Delay line filter: Theory @m

x[n] —l->,
%a Vb, V)
e @—»@—»y[n]

* An ideal filter (no losses) can be modelled very easily using
basic signal theory

h(t) — ﬂa(t) b0 Ta) Bt 21.)+ b 3Ts

= 5
- =

| I—

=
=

08 &0
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ARIES Filter theory @

x[n] z! z! z! —l
b,, Ybl sz VbN
_)@_,@_ ............. ,@_. y[n]

* What is the frequency domain behavior?

Impulse response: h(t) = = [§(t) + 5(t — Ty) + 6(t — 2Ty) + 5(t — 3T)]

=1 =

ot —T) L X (jw)e T
Standard transform

airs:
g 5(t) S 1
1 T, 1 —32wT, 1 —33wT,
Transfer function: (. (E e T T it d)
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p SSurface mount power E@V
dividers/combiners:. Why high isolation il

« Why can we not split and combine the signals
directly on the transmission line?
- No isolation causes filter to ring!

¥ N\
NS
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4RiEsAmplitude balanced power combiner @

* The surface mount combiner is not well balanced for some frequencies
* This performance is effectively limited by performance
of the balun transformer

* The other circuitis in principle the same as the surface mount version

— uses adifferent type of a balun,
based on distributed transmission-line elements

Surface mount combiner
transmission: Input 2

urface mount combiner \

‘ttansmission: Input 2 \

s

o 05 1 15 2 25 3
Frequency [GHz]
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ARIES Power combiners: Dissipation @m

* Software developed specifically to estimate the power
dissipation in a S-parameter network that is fed with a real
stripline pickup signal

[ [ ) [ Balanced power combiner total power dissipation )

3-port network

V;,f;* 3 IV;.I;

4 500
0 1 2 3 4

Voltage [V]
] 4 o -

QI
by . ol
ol &7
w
=]
t=]
Dissipated power [dBm]

120
Peak vaoltage [V]
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