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Outline

• Introduction to the Beam Position Measurement  

– Symmetry in beam position monitoring

– Calibration methods to ensure a high measurement stability

– Single channel heterodyne receiver

• BPM electronics utilizing time-multiplexed electrode signals

– DESY: BPM electronics at HERA-e and FLASH

 Design principle introduced by R. Neumann

– CERN: LHC interlock BPM R&D

 Based on the thesis activities of Oskar Bjorkquist,

and with help of Irene Degl’Innocenti and Jan Posipil
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Introduction: A typical BPM setup 
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Beam Position Measurement

• BPMs are based on a symmetric measurement setup
– Detect the beam asymmetry, i.e. the beam position, 

 by a perfect symmetric arrangement of 2 identical read-out channels 

 to suppress the common mode

 to simplify the normalization to the beam intensity

 Beam position signals: An AM signal with the bunch response as carrier

• Asymmetries in the BPM read-out system channels
– Will result in an (electronic) offset of the reported beam position

 can be tolerated and calibrated if the asymmetric effect does not change over 
time

 Is often linked to tolerances of RF / analog electronic components, RF cables 
and connectors, etc.

– Can also be design choices, e.g. different BPM electrodes or asymmetric 
arrangement, different gains to electronically center a permanent large beam offset

• Time varying asymmetries result in uncontrollable position 
offsets, and are a major limitation of the BPM performance!
– Caused by a variety of effects in the analog and RF signal 

processing, e.g. ambient temperature, humidity, aging and radiation 
effects of components

– Also external EM-fields (pulsed RF, kicker signals), or uncontrolled 
grounding can break the symmetry   
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Example: Aging of RF components

RF connectors and coaxial cables also undergo aging effects!
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Online Calibration Methods

• Calibration tone technique 

– only applicable in 
narrowband 
operation

– Requires a separate 
detector channel

courtesy

N. Eddy

• Crossbar switching technique 
– e.g. used for the Libera BPMs from Instrumentation 

Technology

– <100 nm stability over 14 hours

– No position measurement during switching transition

courtesy P. Leban

• Online calibration methods 
– require a few stable, high 

performance “reference” 
components, like 
 analog switches 

 RF couplers & connectors

 transmission-lines

– Adds complexity to the 
BPM system



Page 7ARIES Workshop – 12th-14th November 2018: Time-multiplexed BPM signals

Single channel BPM: MPX Receiver

• Narrowband RF heterodyne receiver with multiplexed inputs:

– Downmix, demodulate and normalize the BPM signals

 Classical RF radio-receiver technology applied to process BPM signals

 Supplies the individual BPM electrode signals and the hor./ vert. position signals

– Single channel signal processing with T&H at the analog outputs

 Improves the stability due to drift of electronics components
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courtesy J. Hinckson, 

K. Unser, J. Bergoz
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bunched beam current

Time-multiplexed BPM signals

signal 

conditioning

A

D

C

DAQ

Electrode A

Electrode B

Belec signal,

direct

Aelec signal,

delayedsignal delay,

e.g. coaxial cable requires every 

2nd or more RF 

buckets empty!

combined A & B signal 

+

B BA A



Page 9ARIES Workshop – 12th-14th November 2018: Time-multiplexed BPM signals

DESYs early MPX BPM System

• Developed and operated at the DESY HERA electron ring

– Every 48th 2 ns bucket filled (96 ns bunch-to-bunch distance)

• “Exported” to the Fermilab A0-Photoinjector test facility linac
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DESY MPX BPM Electronics @ FNAL
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DESY FLASH MPX BPM System

courtesy B. Lorbeer
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DESY MPX BPM Electronics

• 100 ns delay-line signal combination (2 electrodes)

– 80 m long 3/8” high quality coaxial cables

• 40 dB RF pre-amplifier to cover 15 pC single-bunch operation

– NF = 3.3 dB, 600 MHz BW

– Resolution <10 μm for single bunch operation >10 pC

• Analog electronics based on μTCA RTM

– 600 MHz BW (-3 dB) & double-peak detector

 VRF peak min = 5 mV

– Gain switching (RF step attenuator)

– 4 input channels and test pulse generators

• Commercial μTCA digitizer Struck SIS8300

– 10-ch, 125MS/s, 16-bit

– External RF synchronous 108 MHz clock

• Unfortunately: No long-term drift analysis data available, …yet.

– However, this BPM technology is routinely and successfully used for 
beam energy calibration, which is cross calibrated to the photon 
energy of the FLASH FEL.
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CERN LHC Interlock BPM R&D
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LHC Interlock BPM: Key Elements

• Stripline BPM

– 2 vertical and 2 horizontal, 120 mm long electrodes

• High isolation, balanced high-power signal combiner

• 4-stage delay-line based, comb (FIR) band-pass filter

• ADC digitizer and digital signal processing
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Stripline BPM Bunch Signals

• CST wakefield simulation and oscilloscope measurement

– 1.35e11 protons per bunch

– Measurement captured after ~70 m ½” Heliax cable

 Oscilloscope LeCroy Waverunner SDA 18000 (60 GS/s, 18 GHz BW)

Time domain comparison: 

Simulation and measurement

Frequency domain comparison: 

Simulation and measurement

2 ns

Amplitude 

difference: 

10 %

~500 MHz
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Amplitude-balanced Power Combiner

port 2

Σ-port 1

port 3

Ferrite beads

~ Τ𝝀 𝟒 coaxial cable 

@ 500 MHz

~ Τ𝝀 𝟒 coaxial cable 

@ 500 MHz

Ferrite beads

• ~6 dB insertion loss

• 10 W CW power handling

• 40 dB isolation @ 2 GHz

• ±0.4 dB amplitude, ±40 phase balance
– in the range 10-5000 MHz
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RF FIR Filter Theory

• 4x 2 ns delays:

– maxima at: n x 500 MHz

Ideal filter impulse response Ideal filter transfer function
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High Isolation Power Combiner

Prototype design

Port 1

Port 2

Port 3
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Stripline PCB Comb BPF

Frequency response of PCB filter.

LHC beam measurement of PCB filter at 
1.35e11 bunch intensity.

PCB layout and initial 
power divider design.

First manufactured 
prototype.

• 1.35e11 proton bunch via ~70 m long coaxial cable

– Acquired at 60 GS/s with 18 GHz BW

• Stripline PCB prototype

– Center frequency off by ~5 %

– Substrate: Rogers RO4360G2 (εr = 6.15) 
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Beam Measurements

60 GS/s, 8-bit

3.2 GS/s, 12-bit 2.6 GS/s, 14-bit
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LHC Doublet Bunches (Simulation)

Single bunch (measured)

A1+

A2-A2+

A1-A+ A-

25 ns 25 ns

Doublet bunch (simulated)
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Estimated Performance

• Meets the LHC interlock BPM resolution requirement
– <500 μm RMS bunch-by-bunch for a range of 5e9…2e11 ppb w/o gain switching!

– including a beam displacement range of ±7.5 mm

• Keeps the reported mean value beam position over the entire bunch intensity range

• Operates also with 5+20 ns doublet bunches 
– at a reduced performance
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Summary

• Single channel, time-multiplexed BPM electronics can be an 
alternative to a multi-channel BPM read-out technique

– Requires empty RF buckets

• Time MPX BPM technologies are based on

– Precise, stable time delays utilizing high quality coaxial cables 
and power combiners

– Low-pass integration or comb-style FIR band-pass filters in 
connection with track&hold circuits, peak detectors, or fast 
digitizers

• Time MPX BPMs performance is successfully demonstrated 
in ring and linear accelerators

– DESY HERA-e, Fermilab A0-Photoinjector, DESY FLASH

– In future: CERN LHC interlock BPMs

• Long term drift stability could not yet be quantified: TBD!

– However, the concept omits the needs of online calibration or 
channel switching schemas, thus appears to be more simple 
and straightforward.
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Backup Slides…



Page 25ARIES Workshop – 12th-14th November 2018: Time-multiplexed BPM signals

Stripline electrodes: Characteristics

• Coupled signal is dependent on geometry of electrode

• One can say that a certain impulse response 𝑧𝑇(𝑡) relates the 
beam current 𝑖𝑏(𝑡) to the pickup voltage 𝑣𝑝𝑢(𝑡) in the time 
domain through convolution:

𝑣𝑝𝑢(𝑡) = න
−∞

𝑡

𝑖𝑏 𝜏 𝑧𝑇 𝑡 − 𝜏 d𝜏

𝑧𝑇

25

Beam current Electrode voltage



Page 26ARIES Workshop – 12th-14th November 2018: Time-multiplexed BPM signals

Stripline electrodes: Characteristics

• … And in the frequency domain, a certain transfer 

impedance 𝑍𝑇(𝜔) relates the beam current and the 

pickup voltage through multiplication (ohms law):

𝑉pu(𝜔) = 𝑍𝑇(𝜔)𝐼𝑏(𝜔)

𝑍𝑇

26

Beam current Electrode voltage
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Stripline electrodes: Characteristics

• Given the beam current and the electrode 

voltage signal, the transfer impedance can be 

calculated:

FFT

𝑍𝑇(𝜔)𝑧𝑇(𝑡)

27
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Wilkinson power divider

• ‘Typical’ choice of high isolation power divider

+ Cheap and simple to manufacture

- Poor bandwidth

Isolation

Reflection

Transmission

28
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• A Balun is a 1:1 transformer 

– Signal amplitudes on primary and secondary are equal

• Primary and secondary signals are 1800 out of phase

– Bal-Un: Balanced-Unbalanced transformer

High isolation power combiner: 
How does the isolation work?

29
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High isolation power combiner: 
How does the isolation work?

30

50 Ω

50 Ω

50 Ω

+𝑣1

−𝑣1

𝑣 = 0

• Example: Assume the input signal at port 2

– All resistors are 50 Ohm 

• The 1800 phase shift of the balun forces the node at 

port 3 to receive zero voltage

– port 2-3 isolation
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Amplitude balanced power combiner: 

Coaxial balun design

31
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Amplitude balanced power combiner: 
Balun design

Amplitude

: 

Balanced 

output 2

Amplitud

e: 

Balanced 

output 1

Amplitud

e: 

Balanced 
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Amplitude

: 

Balanced 

output 2

32

• Second coax balances amplitudes, but balanced outputs are still 
frequency dependent
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Amplitude balanced power combiner: 
Balun design

Amplitude: 

Balanced 

output 2

Amplitude: 

Balanced 

output 1

33

• Ferrite beads nearly remove frequency dependency
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Amplitude balanced power combiner: 
Balun design

34

Max phase 

deviation:

±4 degrees

Max amplitude 

difference:

< 0.8 dB
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Amplitude balanced power combiner: 
Balun design

Balun amplitude: 

Balanced output 2

Balun amplitude: 

Balanced output 1

35

• Coaxial cable based balun

• Cables covered in ferrites to 
prevent currents from flowing 
on the outside of coaxial jacket

• Produces a very well 
performing amplitude balance 
over a large frequency range
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Delay line filter: Theory

• An ideal filter (no losses) can be modelled very easily using 

basic signal theory

36
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Filter theory

• What is the frequency domain behavior? 

Impulse response:

Standard transform 
pairs:

Transfer function:

37
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Surface mount power 
dividers/combiners: Why high isolation?

• Why can we not split and combine the signals 
directly on the transmission line? 
- No isolation causes filter to ring!

38
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Amplitude balanced power combiner

• The surface mount combiner is not well balanced for some frequencies

• This performance is effectively limited by performance 

of the balun transformer

• The other circuit is in principle the same as the surface mount version 

– uses a different type of a balun, 

based on distributed transmission-line elements

39

Surface mount combiner 

transmission: Input 2

Surface mount combiner 

transmission: Input 2
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Power combiners: Dissipation

• Software developed specifically to estimate the power 

dissipation in a S-parameter network that is fed with a real 

stripline pickup signal

40


