Joint ARIES Workshop on Electron and Hadron Synchrotrons Barcelona, 12-14th November 2018

Digital Electronics & DAQ for FAIR Algorithms for position calculation and achievable resolution

A. Reiter & R. Singh (GSI) for the Dept. of Beam Instrumentation

Acknowledgements to

K. Lang, O. Chorniy, P. Miedzik, P. Kowina, P. Forck (GSI)

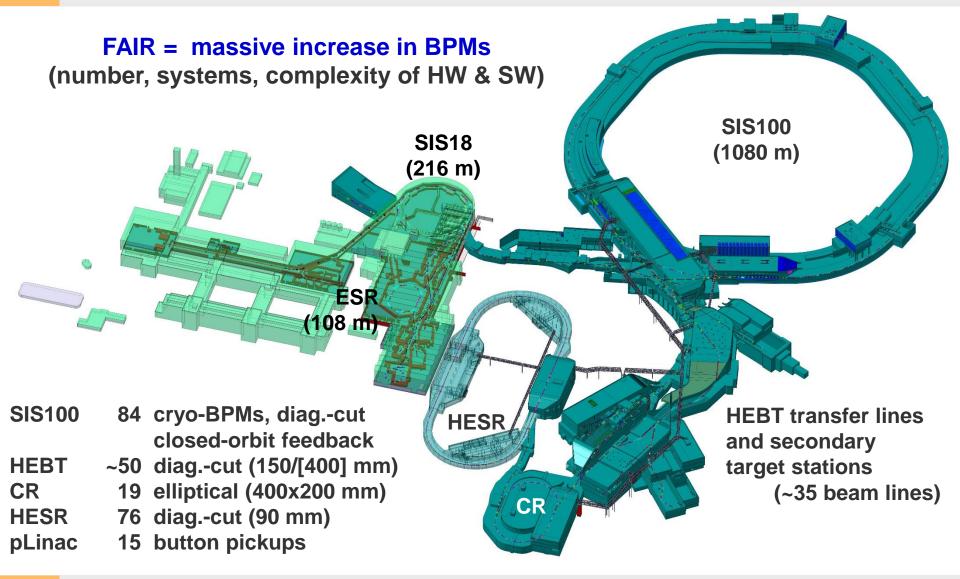
D. Tavares (LNLS)

Outline of talk

- Motivation
 - BPM systems at GSI & FAIR
- Beam position in time-domain analysis
 - Asymmetry measurement (Δ/Σ)
 - Comparison of "classical" estimators and least-squares fit of $(\Delta \Sigma)$ tuples
 - Model prediction of position uncertainty
- Experimental verification: applications and tests
 - Bunch and orbit position uncertainty
 - Robustness of position and tune spectra
 - Multi-turn injection & coasting beam
 - Detour on electron machines: comparison to IQ demodulation
- Conclusion & Outlook

Motivation BPM systems at GSI

SIS18

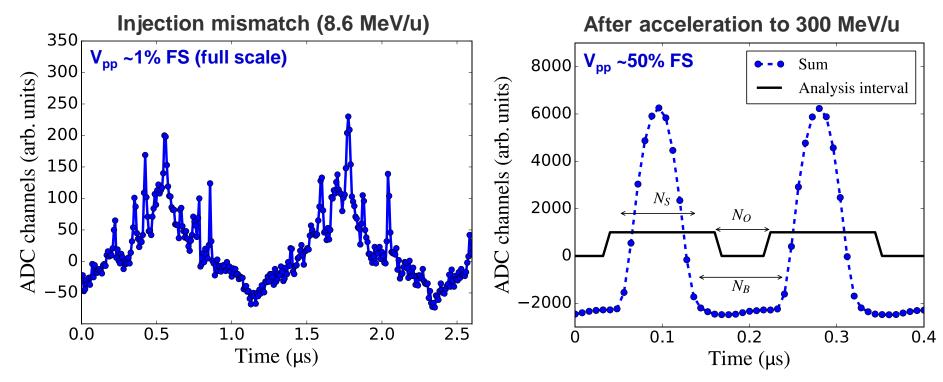

ESR

1.	Ionenquellen
2.	Hochladungsinjektor
3.	Transferkanal
4.	SIS 18
5.	HITRAP
6.	ESR
7.	CRYRING
8.	Target Halle (Hochenergie)
9.	Experimentierhalle (Niedrigenergie)
10.	UNILAC
11.	Hochstrominjektor

"High-energy" BPMs at GSISIS18:12shoe-box (125 mm)closed-orbit FBESR:12shoe-box (250 mm)Transfer SIS-ESR:10 (not in regular operation)CRYRING:9diagonal-cut cylinder (100 mm)

Motivation BPM systems at FAIR

Motivation Extremes of FAIR machines



	SIS100 (100 Tm) pBar Production	CRYRING (1.44 Tm) March 2018 test		
Beam	protons	Magnesium Mg1+		
No. of particles	2.5x10 ¹³	~1x10 ^[6-8]		
Energy	30 GeV	32 keV/u (max. energy)		
Harmonic number	$10 \rightarrow 1$	18		
Pulse length	~500 – 50 ns	few µs		
Electrode signal	~2000 Volt	μV – tens of mV		
Front-end electronics	 18:2 matching transformer (-50 - 60) dB amplifier BW = (0.04 - 7/55) MHz 	 High-impedance +40/60 dB amplifier BW = (0.01 - 4/40) MHz 		
Data acquisition	250 MSa/s ADC (± 1 Volt, 16 bit, ENOB= 12)	125 MSa/s ADC (± 1 Volt, 16 bit)		
RF gymnastics bunch merging & compression (SIS100), bunch rotation stochastic cooling (CR), longitudinal slip stacking (HESP				

Position measurement Real signals from SIS18

- DAQ hardware : 125 MSa/s, 14 bit ADC, ENOB~10 (Libera Hadron Platform A)
- TOPOS system: integral with baseline restoration and dual-threshold detection

- Bunch quality differs strongly throughout cycle: Baseline restoration or bunch detection difficult or unreliable. Ideally, new analysis is independent of bunch shape.
- General question: How can we predict the uncertainty of a bunch or orbit position?

Position measurement Approach of evaluation

BPM: symmetric detector sensing an asymmetry between signals $S_{\{L,R,T,B\}}$ many geometries with "linear" and non-linear response to beam offsets

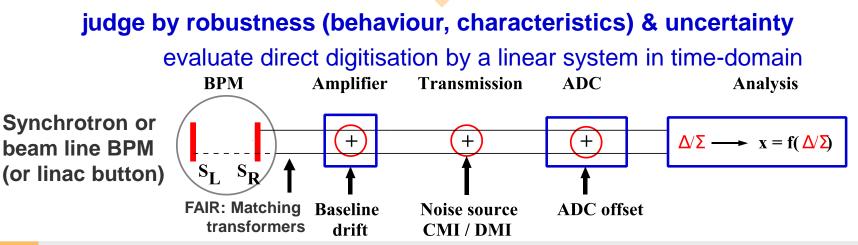
variety of algorithms and approaches difference-over-sum (Δ/Σ) logarithmic ratio amplitude to phase conversion ...

most methods can be expressed as functions of (Δ/Σ)

R. Shafer, Beam position monitoring, AIP Conf. Proc. 249 (1992)

focus on asymmetry (Δ/Σ)

 $\mathbf{x} = (1/sX) \bullet \frac{f(S_R) - f(S_L)}{f(S_R) + f(S_L)} \quad \text{with sensitivity } s_X (\%/mm)$


 $f(S_R)$, $f(S_L)$ is the scalar result of a function f() operating on a set of data samples of right/left signal S_R/S_L

Position measurement Approach of evaluation

Any function $f(c \cdot S) = c \cdot f(S)$ is eligible, even better: $f(c \cdot S + offset) = c \cdot f(S)$ But which candidate is "optimal", at least for us?

peak value (Smax)integral after baseline restoration (INT)integral of absolute value |S|root-sum-square (RSS)standard deviation (STD)define empirical requirements for "optimum" resultWe overlooked
STD initially !

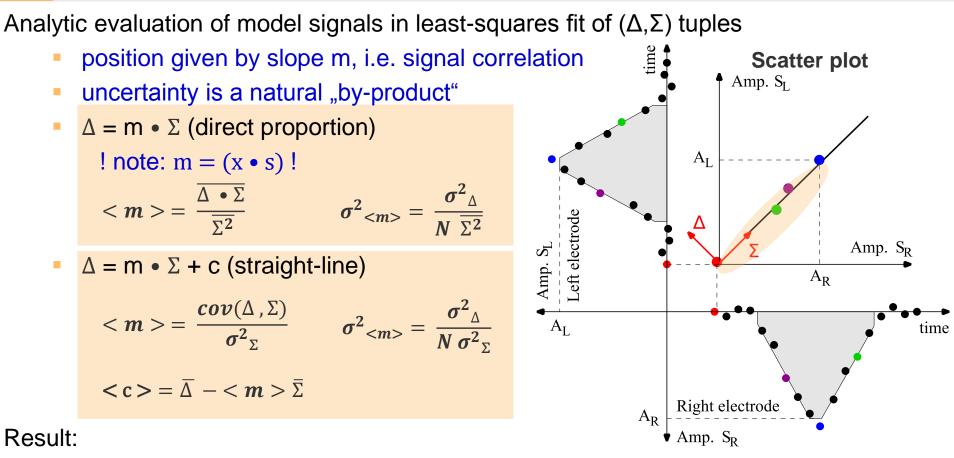
Time-domain model "Classic" (Δ/Σ) approach

Statistical model: triangle (or square) of independent samples with uncertainty σ_V

ADC voltage 🕈 ADC voltage (no drift) (with drift) V_{FS} Restoration Analysis Window Window $N_{S} = 10$ А Analytical calculation $\sigma_{\rm V}$ - for arbitrary position **Baseline** Offset - with & w/o baseline droop $N_{S} = 10$ $N_0 = 4$ - for INT, RSS, STD N $N_{B} = 4$ Full Baseline t_1 t5 Time t $N_{\rm B} = 8$ 1 5 Sample no. i

Position uncertainty of centred beam for

- integral with baseline restoration
- root-sum-square (RSS= $\sqrt{\sum_i (S_i)^2}$)
- standard deviation (STD)


$$\sigma_{INT} = \frac{1}{s} \frac{\sqrt{N + (N^2/N_0)}}{\sqrt{2} I} \quad (N = N_S + N_B)$$

$$\sigma_{RSS} = \frac{1}{s} \frac{\sigma_V}{\sqrt{2} RSS}$$
$$\sigma_{STD} = \frac{1}{s} \frac{\sigma_V}{\sqrt{2N} STD}$$

Uncertainty depends on offset / baseline droop!

Time-domain model Least-squares fit

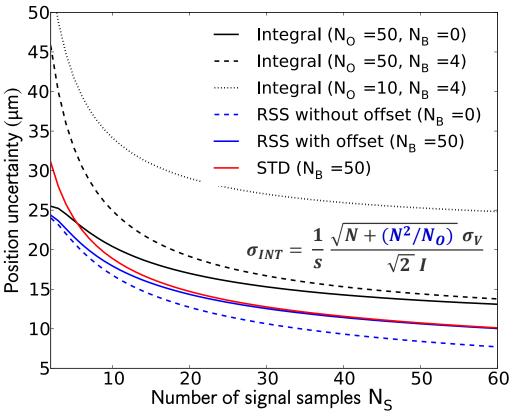
- Integral with baseline restoration: $\langle c \rangle = 0 \Rightarrow \langle m \rangle = \overline{\Delta}/\overline{\Sigma}$
- For centred beams, uncertainties are identical to those of classical approach, e.g. for direct proportion: $\sigma^2_{<m>} = \frac{\sigma^2_{\Delta}}{N \Sigma^2} = \frac{\sigma^2_{\Delta}}{\Sigma(\Sigma_i)^2} = \frac{2 \sigma^2_V}{\Sigma(2S_i)^2} = \frac{\sigma^2_V}{2RSS^2} = (s \cdot \sigma)^2_{RSS}$

Time-domain model

Analysis properties

Classical approach	Integral	RSS	STD
Least-squares	constrained fit	direct proportion	straight line
Coordinate system	absolute	absolute	relative / floating
Position weight	Σ	Σ^2	$(\Sigma - \overline{\Sigma})^2$
Need for			
- baseline restoration	yes	no	no
- ADC zero adjustment	no	yes	no
Tolerance to			
- AC coupling (baseline droop)	no	yes	yes
- random offsets	no	no	yes
 low-frequency distortion (for small amplitudes) 	no	no	$v < 10 \frac{MHz}{N}$ (rough rule of thumb)

12


Time-domain model

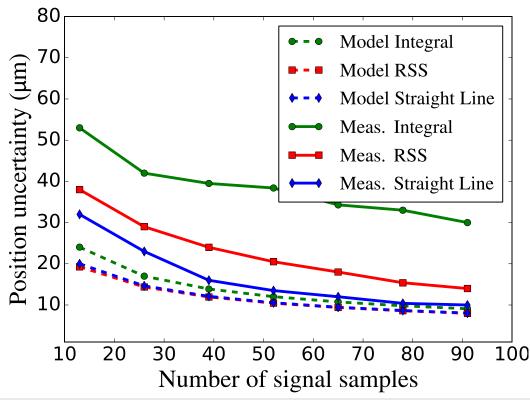
Achievable resolution

- Uncertainty comparison for centred, triangular pulse
- Example: straight-line fit

$$\sigma_{} = \sqrt{\frac{3}{2}} \left(\frac{\sigma_V}{A V_{FS}}\right) \sqrt{\frac{(N_S + N_B)}{(N_S + 2) \left(\frac{1}{4}N_S + N_B\right)}}$$

- Analysis parameters
 - no. of signal samples N_S
 - no. of baseline samples N_B
- SIS18 hardware parameters
 - noise $\sigma_V = 1 \text{ mV}$
 - full scale V_{FS} = 2 Volt
 - signal amplitude A = 0.5 FS
 - sensitivity s_V = 2 (%/mm)
 equiv. to diag.-cut cylinder (s = 1/r)
 of r = 50 mm radius

FAIR: 250 MSa/s is sufficient for smallest 50 ns pulse length, yielding ~13 samples (requirement $\sigma_{x/y}$ < 0.1 mm)

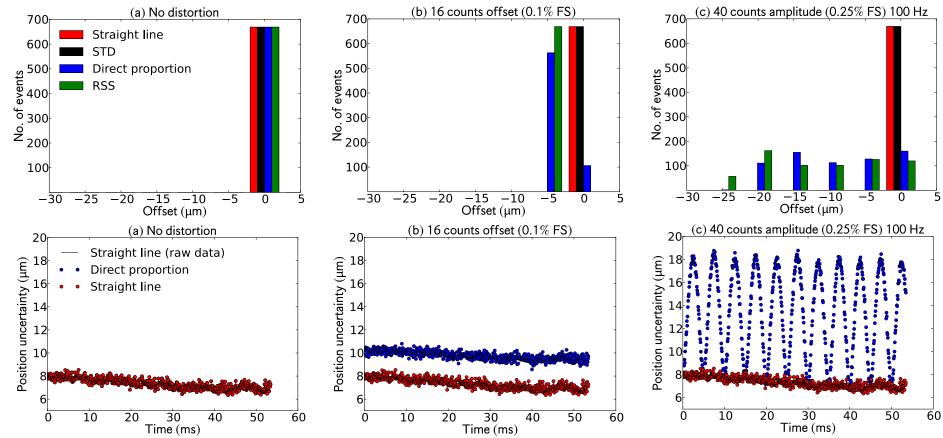


Experiments (flat top) Uncertainty comparison

- Experiment conditions
- Data taken after acceleration to 300 MeV/u
- Vertical BPM: pulse shape (N_S~13) as in slide 8 (A= 0.5), sensitivity $s_V = 2$ (%/mm)
- Analysis: Include increasing number of bunches to statistically simulate larger number of signal samples, for a case where expected uncertainties are similar

- Result
- Simple model seems to provide reasonable estimates
- Only straight-line fit approaches theoretical limit for N_S >40
- σ_y (short bunch) < 0.05 mm

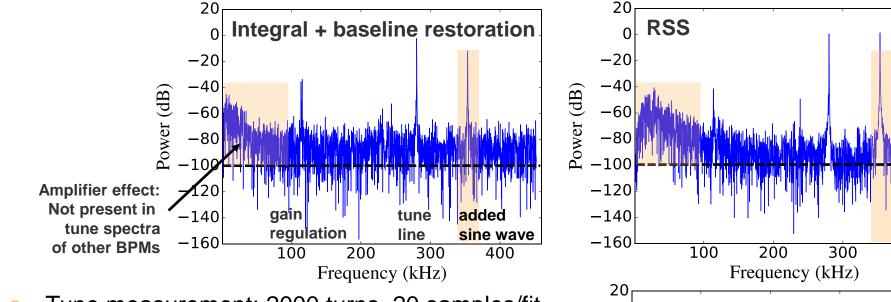
or $\sigma_{\rm m} = (\sigma_{\rm y} \cdot {\rm s}) < 1 \times 10^{-3}$



Experiments (flat top)

Orbit uncertainty & robustness

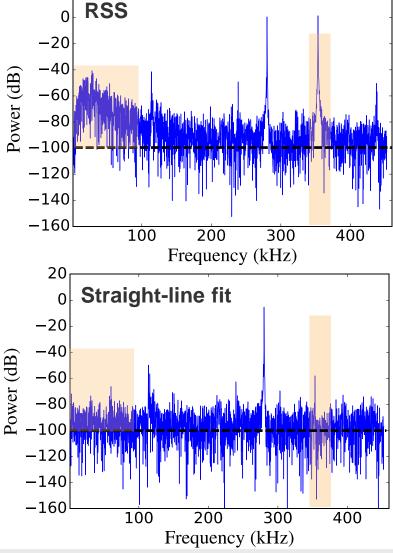
- 300 MeV/u data (hor. BPM, s_H= 0.8%/mm, 10000 samples/fit ~ 75 turns, A= 0.3)
- Add distortion to one electrode signal in analysis and calculate offset to raw data



Result: Orbit uncertainty <10 µm; RSS and direct proportion sensitive to distortions

Experiments (flat top)

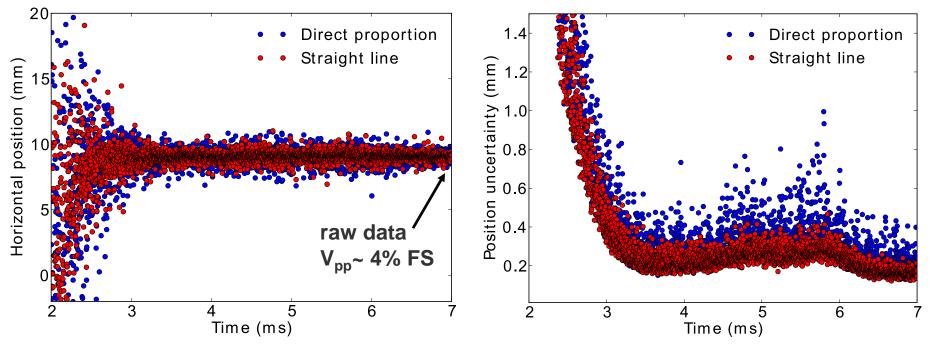
Horizontal tune & robustness



- Tune measurement: 2000 turns, 20 samples/fit $v = 280 \text{ kHz} (v_{ref} = 905 \text{ kHz})$
- 112, 224 kHz by amplifier gain regulation loop
- Add 353 kHz sine wave of 0.15% FS amplitude wave to one BPM electrode in analysis

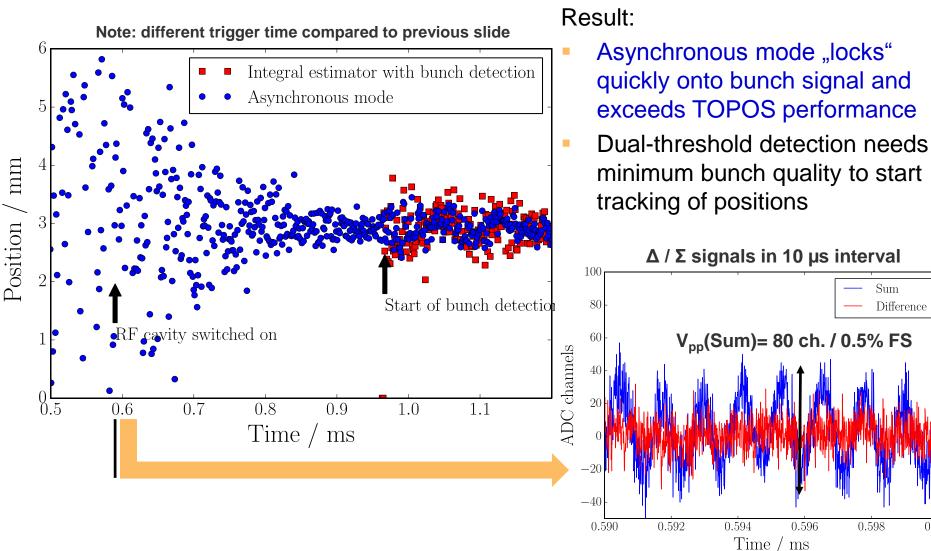
Result: Straight-line fit able to suppress added interference and real amplifier noise (< 100 kHz)

rule of thumb:
$$v < 10 \frac{MHz}{N}$$
 = 500 kHz



Experiments (start of cycle)

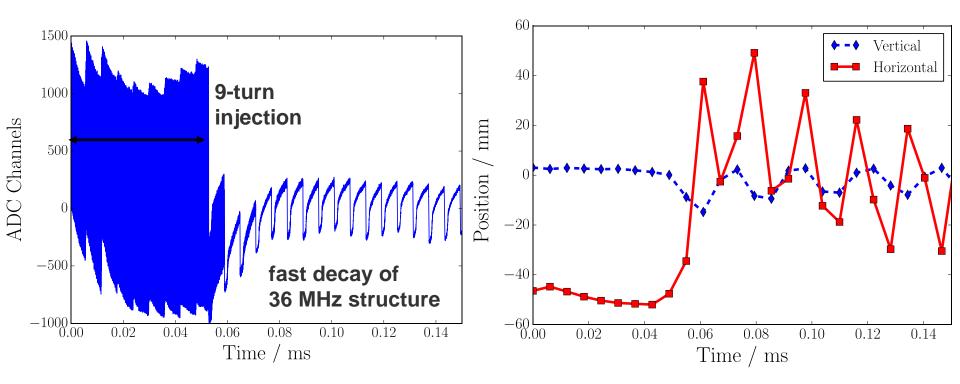
Orbit by asynchronous mode


- Asynchronous mode: Data stream of fit results for fixed number of samples 200 samples/fit = 625 kHz stream (3125 positions in 5 ms) "observer" mode: no external signals, no bunch detection,…
- Check positions after multi-turn injection in SIS18 for direct prop. and straight-line

Result: RSS yields slightly larger jitter, its uncertainty shows outliers / asymmetric tail

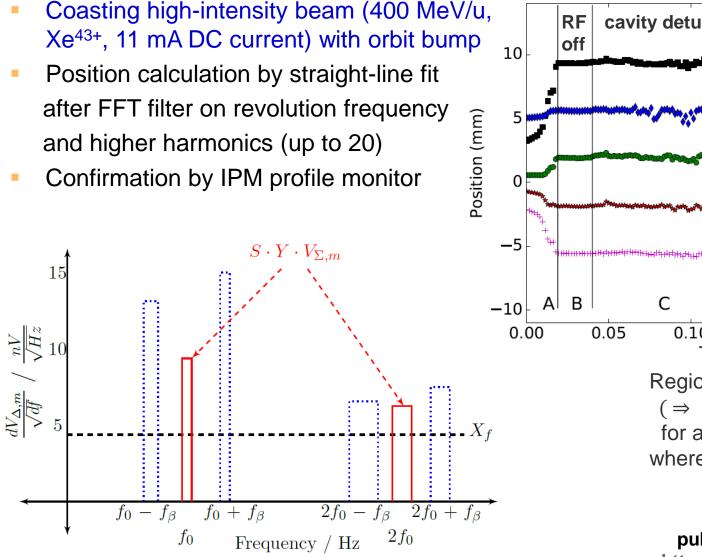
Experiments (start of cycle)

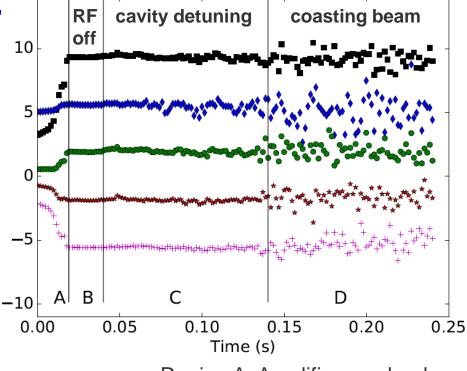
Asynchronous mode vs SIS18 TOPOS


Facility for Antiproton and Ion Research in Europe

0.600

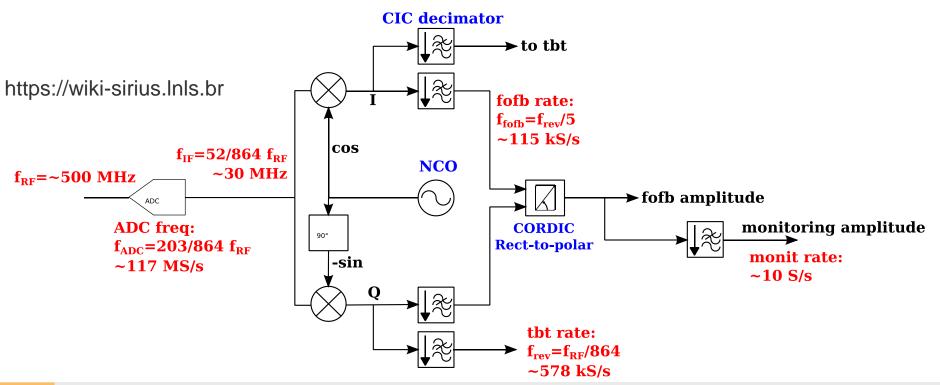
Experiments "Exotic" applications




- Multi-turn injection from UNILAC injector
- Turn-by-turn position evaluation using standard deviation (STD)
- Last injected turn dominates position due to fast decay of structure
- Reproduction of design offset due to injection bumper

Experiments "Exotic" applications

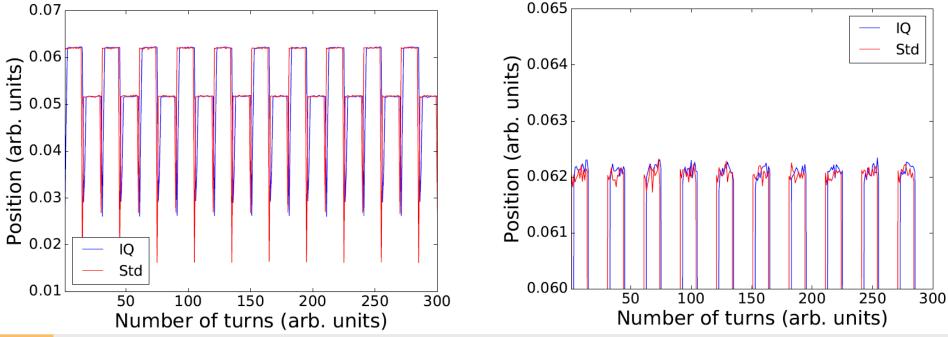
Region A: Amplifier overload (\Rightarrow positions not correct) for all position, but 5 mm data where we used a smaller gain!


R. Singh et al., accepted for publication in Rev. of Sci. Instr. https://doi.org/10.1063/1.5063324

Simulation

Comparison to IQ demodulation

- BPM system for Sirius light source (by courtesy of D. Tavares, LNLS)
- Simulated ADC raw data analysed as turn-by-turn blocks using STD
- Results of both approaches in good agreement



21

Simulation

Comparison to IQ demodulation

- BPM system for Sirius light source (by courtesy of D. Tavares, LNLS)
- Simulated ADC raw data analysed as turn-by-turn blocks using STD
- Results of both approaches in good agreement

Conclusion & Outlook

- Review of position analysis for a linear system in time-domain
 - "Practical" statistical model: position uncertainty & robustness
 - Straight-line fit (or STD) provides good robustness and resolution, matching model prediction (more information: A. Reiter, S. Singh, NIM A 890 (1018) 18-27 and "arXiv 1609.01332")
- New approach has led to significant improvements (and some new applications)
 - smaller measurement uncertainty
 - orbit position stream via asynchronous mode in extended interval in cycle
 - analysis of tune, multi-turn injection and coasting beam pilot test
 - was compared to simulated data for Sirius BPM system
 - can be applied to linac buttons
- Development status / realisation
 - CRYRING: Straight-line fit (and averaging) stage implemented on FPGA bunch-by-bunch position via RF clock signal
 - SIS18: Direct proportion
 - FAIR: Tests at SIS18 (incl. COFB) and ESR, position calculation options: bunch detection & integral / narrow-band analysis / user-defined calc.

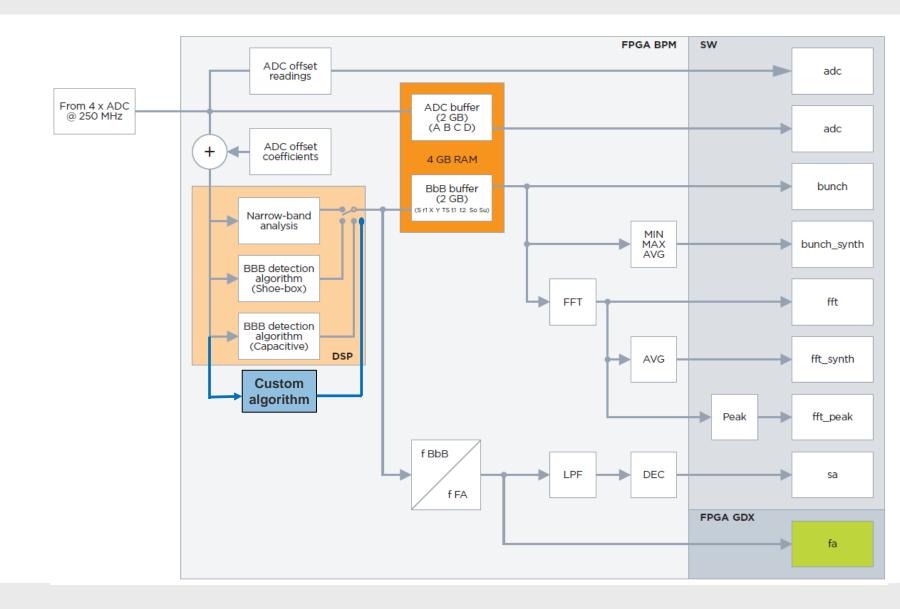
Finally, ... I show some room for improvement

and thank the organisers for the invitation ...

..... and everyone of you for your kind attention !

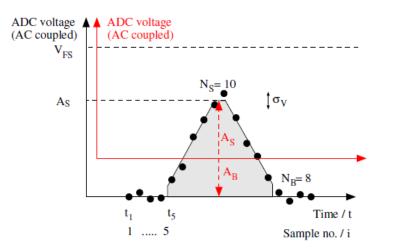
Spare slides

Rendering of FAIR Research Campus



FAIR BPM system

Data paths


Time-domain model Analytic formulae

Triangular pulse with baseline offset due to cyclic pulses Turn-by-turn analysis (h=1):

Analyse all signals in one period N_S and N_B

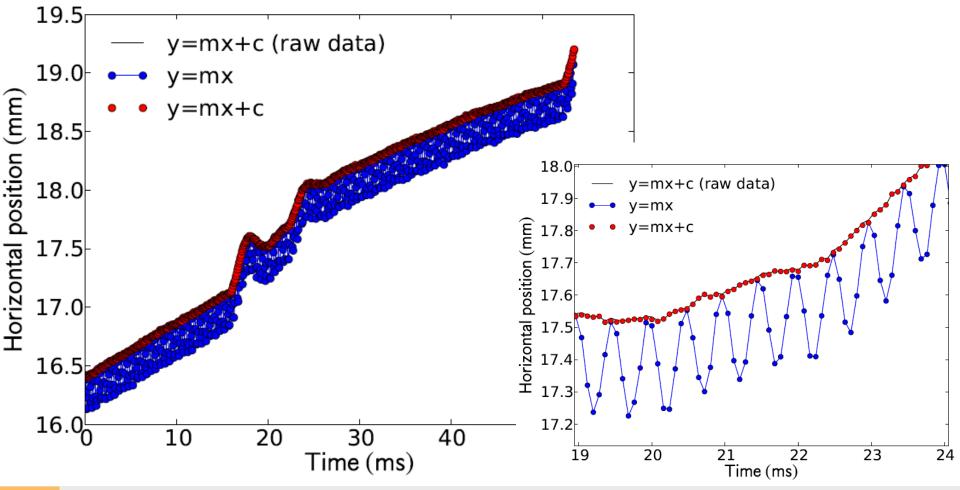
Amplitudes refer to black coordinate system without offset

Integral:

$$\frac{\sigma_{\langle x \rangle}}{r} = \frac{4 \cdot \sigma_V}{V_{FS}} \frac{\sqrt{A_L^2 + A_R^2}}{(A_L + A_R)^2} \cdot \frac{1}{N_S} \sqrt{(N_S + N_B) + \frac{(N_S + N_B)^2}{N_O}}$$

RSS: Balanced system - N_B samples between pulses

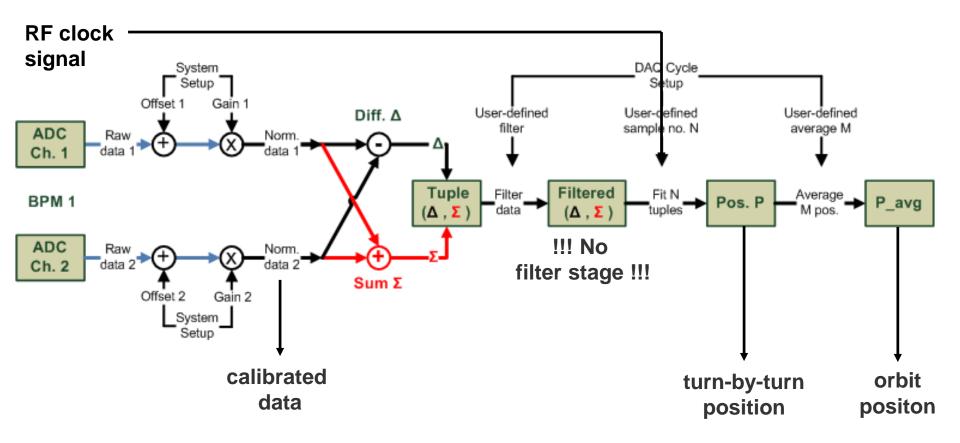
$$\frac{\sigma_{\langle x \rangle}}{r} \approx \frac{2\sqrt{3} \cdot \sigma_V}{V_{FS}} \cdot \frac{\sqrt{A_L^2 + A_R^2}}{(A_L + A_R)^2}$$
$$\cdot \sqrt{\frac{N_S(N_S + N_B)}{(N_S + 2)(\frac{1}{4}N_S^2 + N_SN_B + N_B + \frac{1}{4}N_S)}}$$


Fit: Identical for RSS for leading terms of N_S and N_B

$$\frac{\sigma_{}}{r} \approx \frac{2\sqrt{3} \cdot \sigma_V}{V_{FS}} \cdot \frac{\sqrt{A_L^2 + A_R^2}}{(A_L + A_R)^2} \cdot \sqrt{\frac{N_S(N_S + N_B)}{(N_S + 2)(\frac{1}{4}N_S^2 + N_S N_B)}}$$

Experiments (flat top) SIS18 cycle

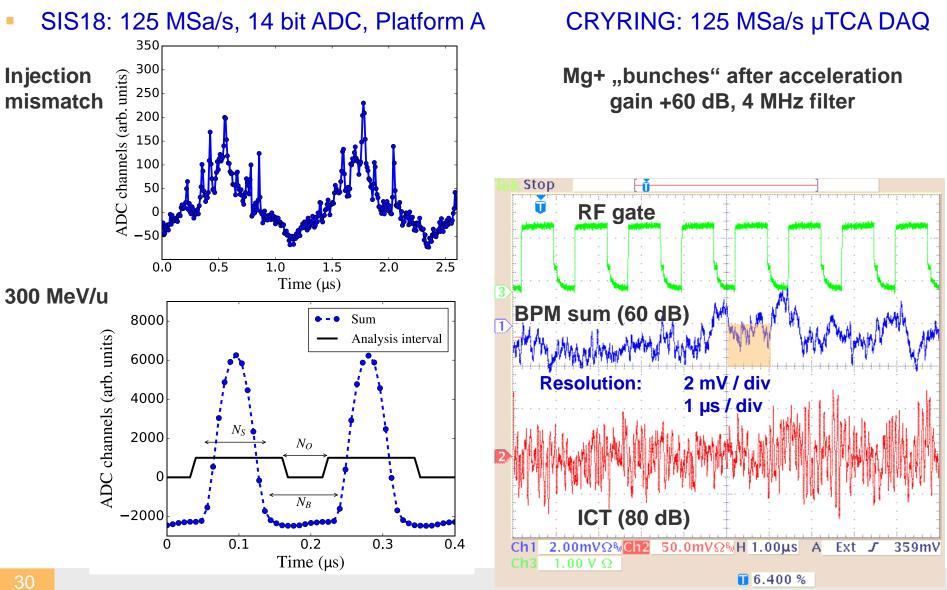
- Signal amplitude 30% FS, 10000 samples / fit ($v_{cut} \sim 1 \text{ kHz}$)
- Added distortion: 1 kHz sine wave of 160 ch. amplitude (1% FS)



29

CRYRING BPM system

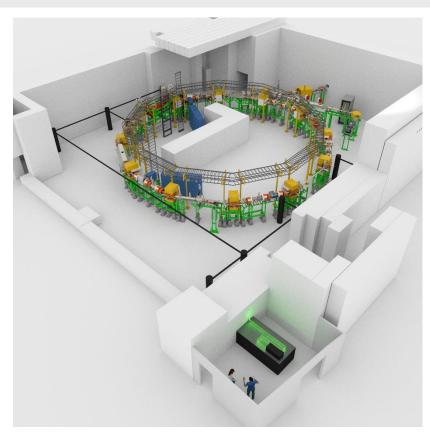
Data path


- µTCA open-hardware system with FAIR timing receiver node (FTRN)
- 125 MSa/a, 16 bit, +/- 1 Volt input range
- RF clock input for turn-by-turn fits (or maximum of 1023 samples)

Signal Examples

MS0-X 2024A, MY58101875: Sat Nov 10 03:45:44 2018

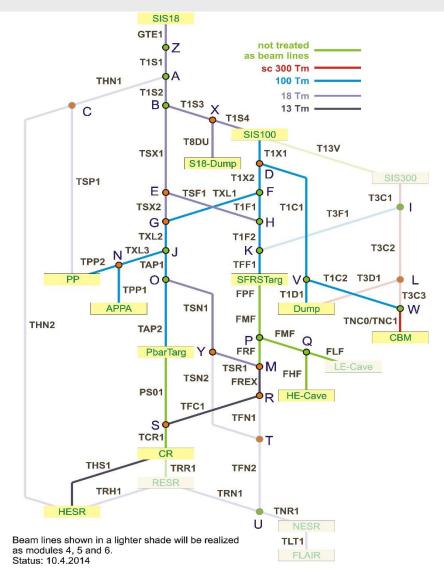
MS0-X 2024A, MY58101875: Sat Nov 10 03:48:21 2018


MS0-X 2024A, MY58101875: Sat Nov 10 04:07:36 2018 20/ 20/ 3 100/ 2.00V/ 0.0s 1.0005/ Stop 800♡ ž ł KEYSIGHT TECHNOLOGIES Acquisition Averaging: 4096 1.00GSa/s Channels 1.00:1 DC DC 1.00:1 DC 1.00:1 3₽ BSP. Measurements +Width(1): 249ns +Duty(4): BPM SUM No edges DC RMS - FS(3): 10.7mV Freq(4): No edges Acquire Menu Acq Model # Avgs Segmented 5 4096 Averaging

33

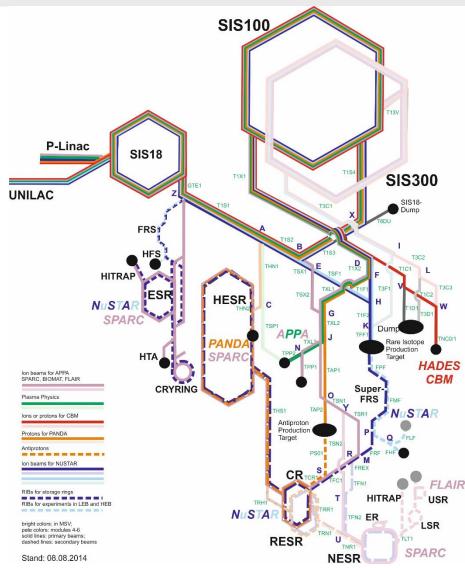
Our latest child CRYRING – a low energy synchrotron

- 1.44 Tm storage ring
- 54 m circumference
- mainly for atomic physics
- Storage of cooled heavy ions from experimental storage ring ESR
- Electron cooler and laser facility
- Research opportunities to study interaction of heavy ions, electrons and photons


... and other reasearch Atomic Nuclear and particle Material Science Accelerator Physics

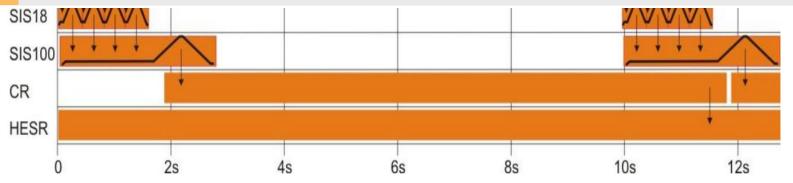
Parallel Operation New Beam Line Network

- "Design ions": proton and U^{+(28 / 73 / 92)}
- Other ions: C, N, Ne, Ar, Ni, Kr, Xe, Au, etc.
- SIS18 & SIS100 beams for users
- Slow / fast extraction: 10-30 s / 30-100 ns
- NuSTAR
 - U²⁸⁺; 1 GeV/u, $3x10^{11}$ to fixed target
 - U²⁸⁺; 1 GeV/u, 70 ns, 5x10¹¹ to CR
- CBM
 - U⁹²⁺; 10 GeV/u; 1.5x10^{10;} 10 s spill
- pBar Production
 - p ; 30 GeV; 2.5x10¹³; 50 ns
- APPA
 - BioMat, SPARC: highly charged ions up to 10 GeV/u; slow extraction
 - Plasma Physics: see NuSTAR; 1 shot every 2 minutes (PHELIX laser)
- FLAIR (ESR/CRYRING/HITRAP)
 - Highly charge ions
 - Deceleration 4 MeV/u 500 keV/u 6 keV/u
 - Trapping of ions for experiments


Green spots at junctions indicate that the connection going straight is open when the junction dipole is switched of

36

Parallel Operation The Underground Map


- Parallel operation to supply several users simultaneously
- Complex pattern of beam chains to be implemented
- White Rabbit Timing system (CERN) and BuTiS Bunch Timing system BuTiS (GSI) and an effective beam scheduling logic will be most crucial
- More than 60 timing domains

pBar Beam Production Beam Pattern

- Design luminosity $L = 2x10^{32} \text{ cm}^{-2} \text{ s}^{-1}$ (100 mb total inelastic pBar-p cross section: $2x10^7 \text{ s}^{-1}$ consumption)
- p-Linac produces 4 pulses of 70 MeV proton beam in ~1.2 s (2.5 Hz)
- SIS18 accelerates each pulse to 4 GeV and needs ~1.6 s, including pre- and postprocessing
- SIS100
 - Injection of 4 batches from SIS18 needs ~1.2 s, yields ~2x10¹³ protons
 - Merging into one single bunch, acceleration to 28.8 GeV/u
 - Compression to bunch length of ~30 ns
 - Cycle length ~2.7 s in MSV with reduced no. of RF cavities, 2.55 s in final setup
- Cooling in CR
 - Bunch rotation to reduce momentum spread ($\Delta p/p \pm 3\%$)
 - Adiabatic de-bunching
 - Stochastic cooling down to p/p 0.1%, Emittance(h,v) ~5 pi mm mrad
 - Repetition time 10 s
- Accumulation in HESR
 - Accumulation of 1x10¹⁰ antiprotons in 1000 s
 - Decelerate/accelerate
 - Beam on target for ~1000 s

pBar Beam Production Example Beam Chain

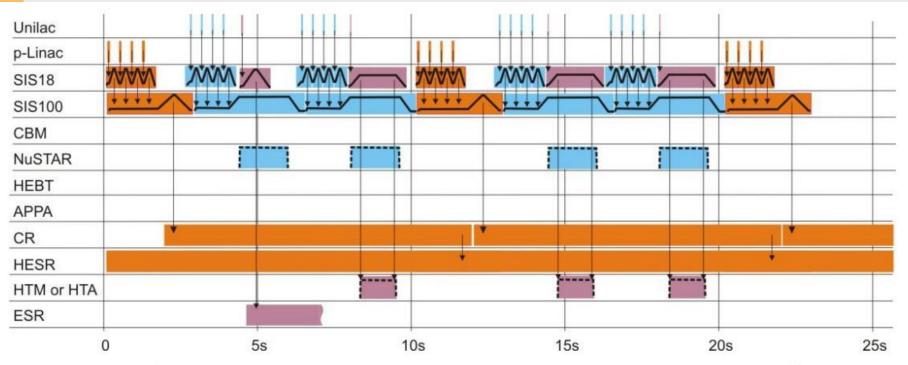


Figure 3-3: Reference Pattern with Antiproton Production as Main Process and NuSTAR as second priority user.