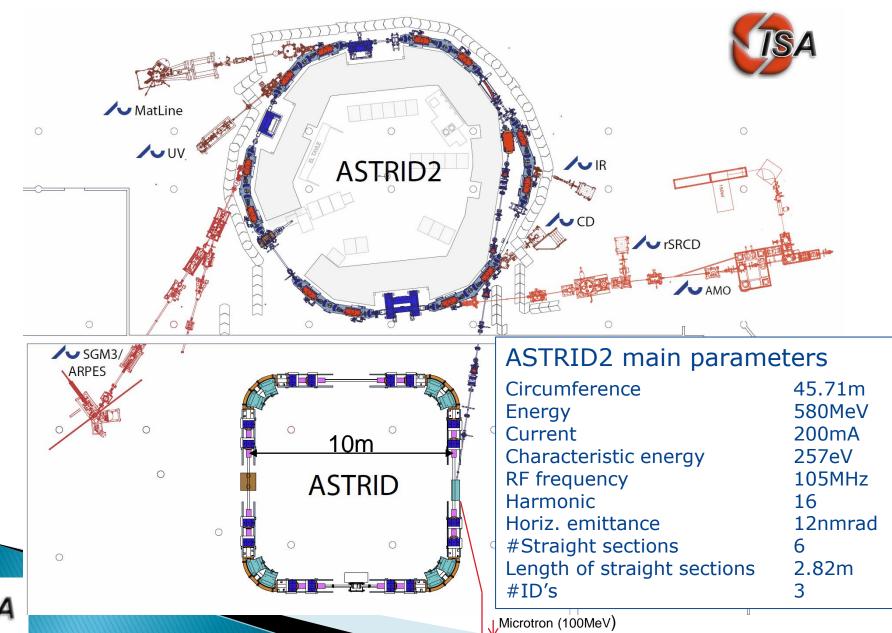
The new ASTRID2 Fast Orbit Feedback system

Jørgen S. Nielsen Center for Storage Ring Facilities (ISA) Department of Physics and Astronomy Aarhus University Denmark


ASTRID2

- ASTRID2 is since 2013 the new synchrotron light source in Aarhus, Denmark
- ASTRID2 main parameters
 - Electron energy:
 - Emittance: 12 nm
 - Beam Current: 200 mA
 - Circumference: 45.7 m
 - 6–fold symmetry
 - lattice: DBA with 12 combined function dipole magnets

580 MeV

- Integrated quadrupole gradient
- 4 straight sections for insertion devices
- Using ASTRID as booster (full energy injection)
 - Allows top-up operation

The ASTRID 2 facility

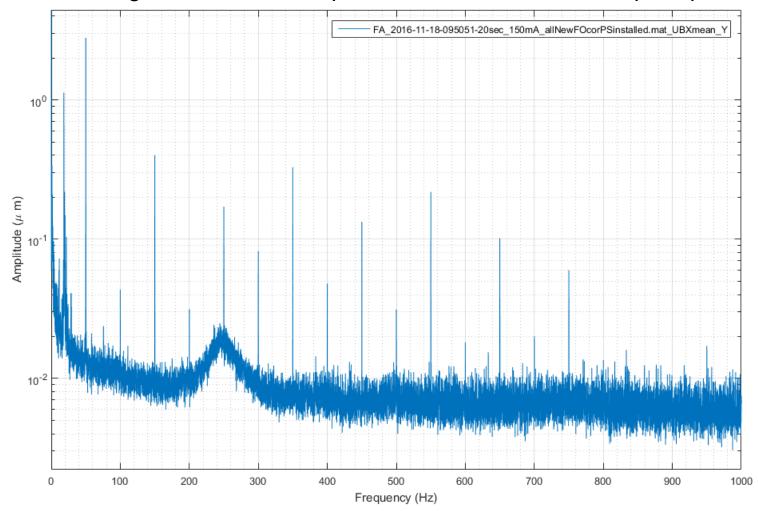
ASTRID2 Orbit Control

- Design/Construction (2010–2012)
 - 12 HV window frame correctors + 12 H correctors
 - Home-made ± 15 A power supplies
 - 24 Button BPM's (4 in each arc)
 - 24 Libera Electron BPM processors
 - Slow Orbit FeedBack
 - LabVIEW
 - Only using the 12 HV correctors
 - No Fast Orbit Feedback
 - To keep cost and complexity down

Orbit problems (disturbances)

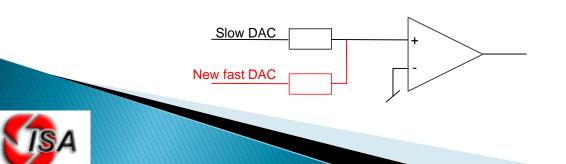
- Disturbance from ASTRID during injections
 Up to ~20 µm (with feedforward)
- Cars on parking lot above ASTRID2
 - \circ Up to ~5 μ m
- Fairly strong 50 Hz noise peaks
 - 50 Hz: ~3 µm
 - 150 Hz: ~0.4 µm
 - 250 Hz: ~0.2 µm
 - 350 Hz: ~0.3 µm
 - 550 Hz: ~0.2 µm

Insufficient resolution in PS (16 bit)


∘ ~1 µm

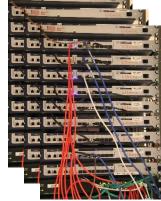
Aries workshop (13/11 2018), ASTRID2 FOFB 5

Orbit disturbances


Average of FFT of beam positions from all 24 vertical pickups

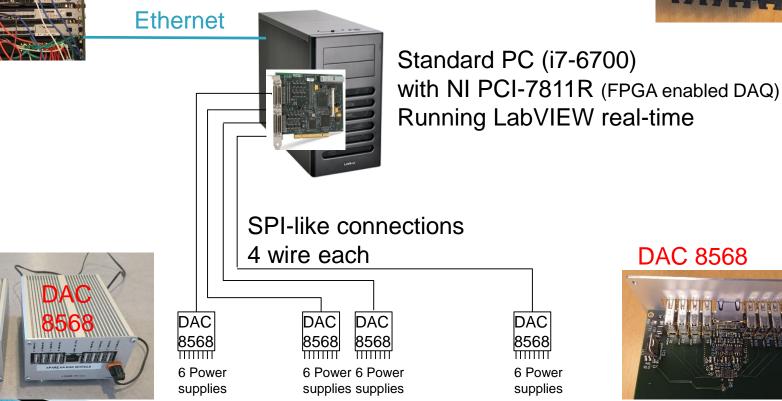
Ideas for Fast Orbit FeedBack

- Beam positions from the 10 kHz Libera Electron FA output
- Tested the original window frame correctors
 Verified bandwidth >~1 kHz
- Possible to upgrade the existing power supplies with a fast (1 kHz) analog input
 - Summing existing 10 Hz control with fast input
 - $\circ\,$ Bandwidth of supply and magnet >~1 kHz
 - But latency (Liberas) is limiting feedback bandwidth
 - Only 1% range => (much) improved resolution



Fast Orbit FeedBack control

- Cheap and simple
 - k€ (and not 10's of k€)
- Tested various solutions
 - CompactRIO (NI-9066): too slow
 - Ethercat (from LabVIEW realtime): too slow
- Final solution
 - Standard PC running LabVIEW real-time
 - Receive Libera FA data through dedicated network card
 - Does the orbit calculations (at 10 kCalc/s)
 - Output: Using a FPGA enabled DAQ-card digital values are feed to 4 DAC chips (TI DAC8568 (8 ch, 16 bit)) via SPI-like lines at a rate of 24*10 kS/s
 - Price: ~3 k€ (plus some work)



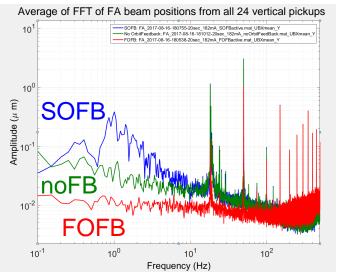
FOFB overview

cable

24 Libera Electron with Grouping One 10 kHz FA output

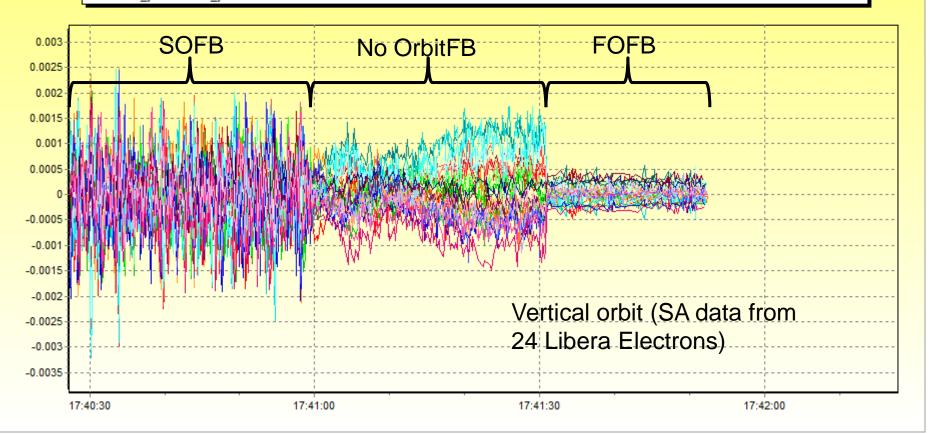
Software loops

Timed loops for

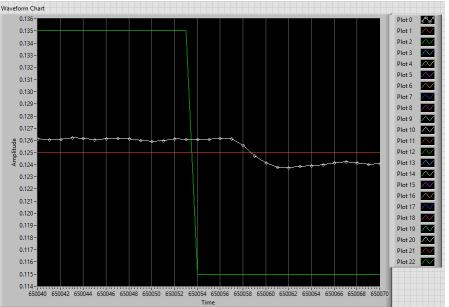

- High priority (10 kHz):
 - Receive network data (FA data) and unpack these
 - ~45% CPU load
 - Orbit correction calculation, summing (PID), and transfer of new dac values to FPGA card (for transmission)
 - ~20% CPU load
- Low priority (1–10 Hz)
 - Analyses
 - Averaging, rms, min/max
 - Optional FFT
- Data are transferred between the loops via Realtime FIFO's

FOFB results

- Clear improvement below ~100 Hz
- Much improvement 0.1~10 Hz range
 - Where SOFB made noise (partly due to insufficient resolution)
- Disturbance from ASTRID during injections
 - $\circ\,$ Hor: From ~20 μm (after feedforward) to a few μm
 - \circ Vert: From ~10 μm to not really noticeable
- Cars on parking lot above ASTRID2
 - From ~5 µm to almost not noticeable
- 50 Hz noise peaks
 - 50 Hz: ~3 μm -> ~1 μm
 - 150 Hz: ~0.5 µm -> same
- Very pleased



11


FOFB results

- UBX111_y - UBX112_y - UBX113_y - UBX114_y - UBX121_y - UBX122_y - UBX123_y - UBX124_y - UBX131_y - UBX132_y - UBX133_y - UBX134_y - UBX141_y - UBX142_y - UBX143_y - UBX144_y - UBX151_y - UBX152_y - UBX153_y - UBX154_y - UBX161_y - UBX162_y - UBX163_y - UBX164_y

FOFB improvements

- Still much 50 Hz and harmonics
- Bandwidth is limited (only up to ~150 Hz)
 - Latency is $600-800 \ \mu s$ (delay of 400 μs + change takes 400 μs)
 - Libera: ~250 µs, RT program: 100-200 µs
- Ideas:
 - Improve feedback algorithm
 - Tried with proper PID, but no improvement
 - Tried with in-loop filter but no success
 - 50 Hz is predictable (on short term)
 - Should allow some feed-forward
 - Inputs from you

Ideas for LBbB feedback system

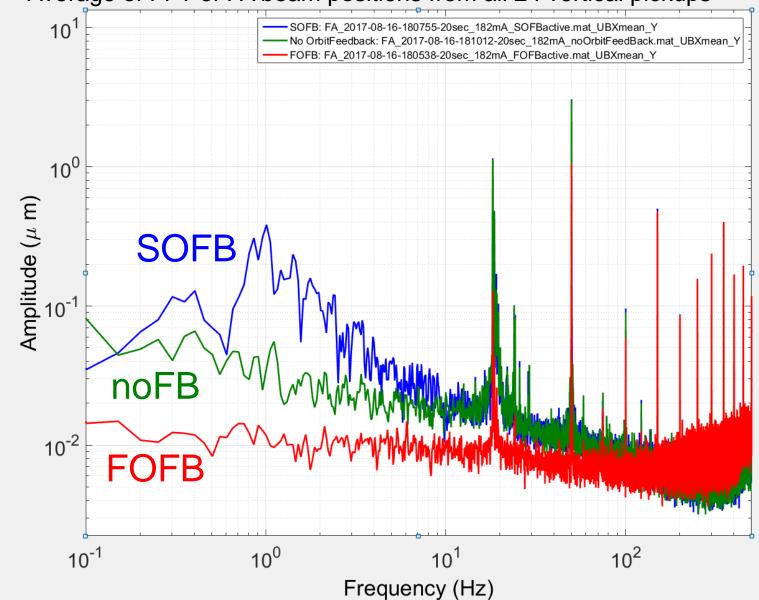
- Following a suggestion from Gunther Rehm we are contemplating using a Red Pitaya for a LBbB feedback processor
- Red Pitaya:
 - Xilinx ZYNQ XC7Z010 SoC
 - $\circ~125~MS/s$ ADC and DAC (x2)
 - ASTRID2 RF frequency is 105 MHz
 - Price: ~300 €
- Status:
 - We have made our first FPGA code modifications for the Red Pitaya

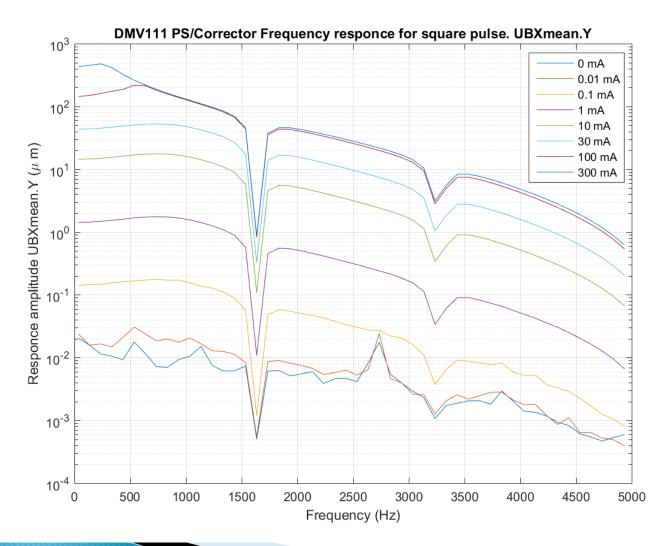
Conclusions

- Have shown you a FOFB system, which is simple and cheap, but still does a quite good job
- Good value for money

Thanks to Martin Stougaard and Per Christensen from Department of Physics and Astronomy for power supply modifications, DAC modules and DAC data transmit system (incl. LabVIEW FPGA code)

Thank you for your attention


Extra slides


Aries workshop (13/11 2018), ASTRID2 FOFB 16

FOFB results

Corrector ResponceMeasured frequency response

FOFB Open Loop Responce

