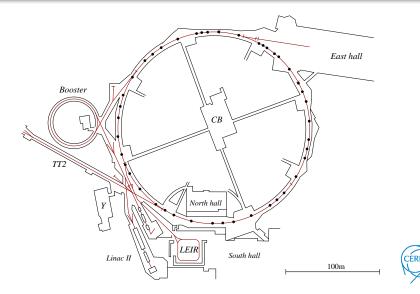
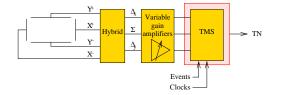
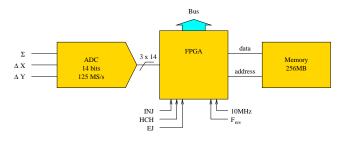
Overview

Bunch-by-Bunch position measurement for the CERN-PS: coping with RF-gymnastics

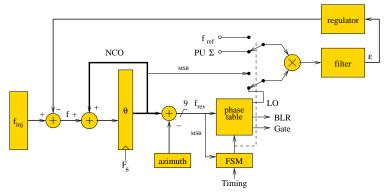

Jeroen Belleman

CERN


November 12, 2018



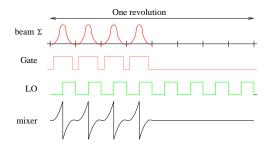
The PS Trajectory Measurement System uses 43 BPMs


TMS architecture for one BPM station

Beam-synchronous signal generation

Beam-synchronous signal generation

Direct Digital Synthesizer (DDS)

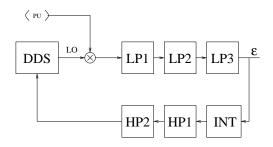

- NCO always runs at F_{rev}
- Update rate 125 MHz
- Phase table generates LO and Gate
- Timing-driven programmable FSM selects one of several possible LO and Gate signals
- FSM also controls BPM and Fref signal routing
- Azimuth defines BPM position in ring
- F_{inj} provides F_{rev} at beam injection
- Regulator provides frequency and phase tracking

Beam-synchronous signals

Goal: Measure position of the centre of charge of each bunch

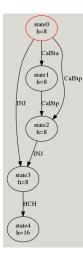
 For each of the signals ΔX, ΔY and Σ, integrate over bunch length

• Bunch position =
$$S \frac{\int \Delta}{\int \Sigma}$$

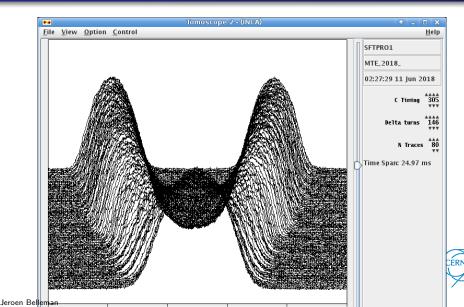


- Gate selects samples belonging to a bunch
- LO serves to derive a phase correction
- A mixer creates a phase error signal
- Can lock on (sub)harmonics

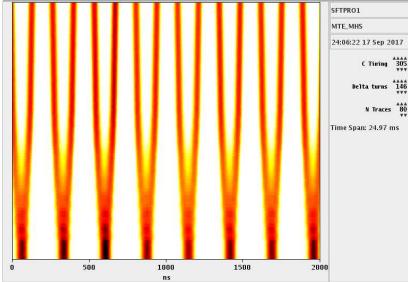
Phase loop dynamics


Discrete-time feedback loop

- In the locked steady state, LO and BPM signals are in quadrature
- The regulator design enforces a zero static phase error
- Beam intensity and number of bunches affect the loop gain

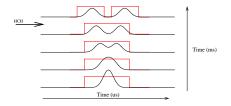

Sequencing

Programmable Finite State Machine


- Each state has associated Gate and LO signals and switch settings for the mixer inputs
- Sequence defined by a programmable transition table
- For each state and timing impulse, it specifies the next state
- Each state specifies a block of trajectory memory
- An event table records information about the location, size and structure of these blocks
- There is room for four of these tables, so we have time enough to read the interesting bits

Splitting a bunch into 2

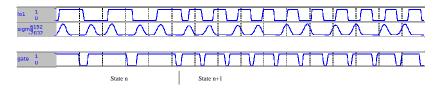
9/28


Splitting bunches into 2

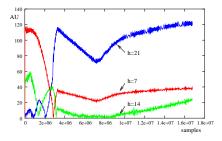
Jeroen Belteman

10/28

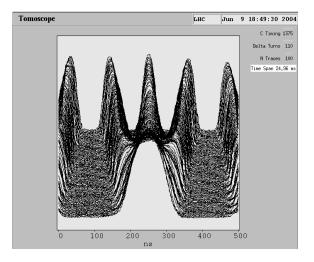
Splitting a bunch into 2


- A single Gate covers both bunchlets until splitting is nearly complete
- Even though splitting is gradual, the TMS switches instantly
- The switch is done on a turn boundary, starting from the injection BPM and propagating around the ring in synchronism with the beam
- A timing pulse derived from LLRF decides the appropriate instant

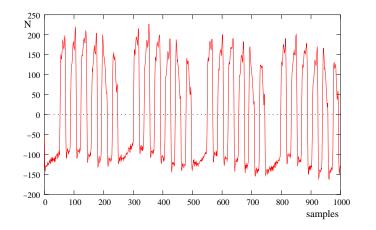
Splitting bunches into 2


Measured on the live system

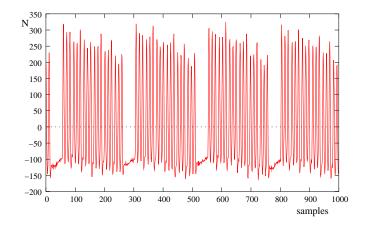
A timing signal advances the FSM to select the new harmonic when splitting is almost complete. LO and Gate signals assume their new waveforms.


Splitting bunches: Frequency domain view

Amplitude of spectral lines over time during bunch splitting


- During the split, the magnitude at the original harmonic drops while the new one grows (This is a split into *three*!)
- Residual levels at the 'wrong' harmonic persist, but are unreliable
- Switching occurs at the cross-over of h=7 and h=21

Splitting a bunch into 3


Beam on h=7

• Six bunches injected on h=7

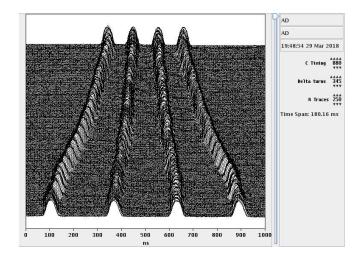
Beam on h=21

- Bunches are split into 3
- Eighteen bunches on h=21

Splitting a bunch into 3

Acquired on the live system

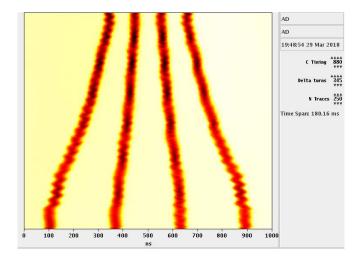
Alignment gets better as splitting progresses.

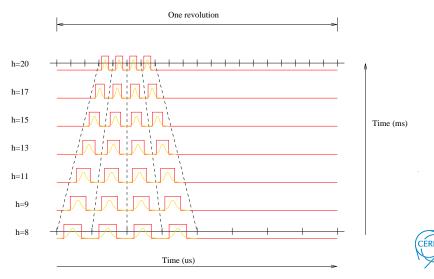


Jeroen Belleman

17/28

Bunch-by-Bunch position measurement for the CERN-PS: coping with RF-gymnastics


Batch compression on AD


Bunch-by-Bunch position measurement for the CERN-PS: coping with RF-gymnastics

Batch compression on AD

Batch compression

Summary

- The TMS is very flexible
- Records both orbits and trajectories of all bunches over complete acceleration cycles
- Delivers multiple subsets of data to multiple independent users
- No settings under user control
- BPMs, pre-amplifiers, timing hardware made in-house
- TMS was built by British industry
- Only the ADC/FPGA modules are custom-made hardware
- Custom software and firmware
- Crates and computers are COTS

End

Thank you

Jeroen Belleman

22/28

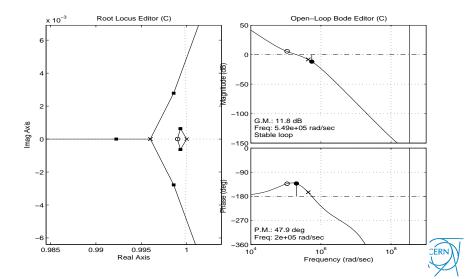
Bunch-by-Bunch position measurement for the CERN-PS: coping with RF-gymnastics

Spares

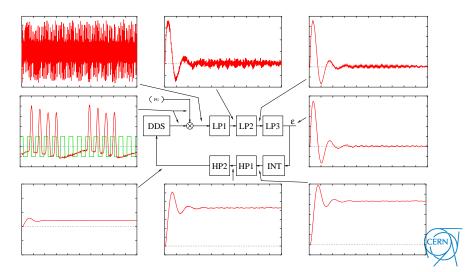
Small signal transfer function

The open loop transfer function:

$$H_o = \frac{hz^{-1}}{A(1-z^{-1})} \cdot H_m \cdot \left(\frac{z^{-1}}{1-0.996z^{-1}}\right)^3 \cdot \frac{(1-0.999z^{-1})^2}{1-z^{-1}} \cdot z^{-n}.$$
(1)

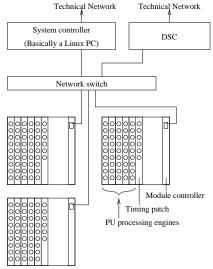

The closed loop transfer function:

$$H_c = \frac{H_o}{1 + K_R H_o}.$$
 (2)


System dynamics determined by the poles of H_c

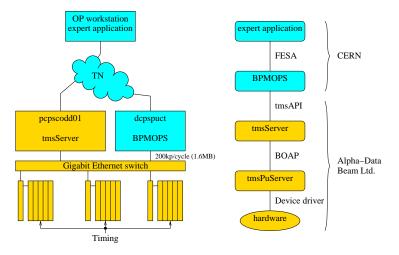
Root locus of PLL

PLL loop frequency step response



Data block summaries

2302	:	SH8	3			
period	start	end	h	bunches	mask	n
0	0	986	0	0	0x00000	3090574
1	5	95	8	1	0x00080	20968
2	171	986	8	8	0x000ff	3069606
[]						
2305: SH16-21LI						
period	start	end	h	bunches	mask	n
0	0	1351	0	0	0x00000	1774291
1	5	95	8	1	0x00002	21671
2	236	376	16	2	0x00003	76780
4	376	396	14	2	0x00003	13444
5	396	441	12	2	0x00003	30248
6	441	466	24	4	0x0000f	33608
7	466	1351	21	4	0x0000f	1598540


Hardware setup

8-slot cPCI

CÈRI

Hardware and software organization

