

Libera BPM and Closed Orbit feedback systems

Aleš Bardorfer, ARIES workshop, November 2018

www.i-tech.si

Outline

- Libera BPM family
- COFB examples
- COFB algorithms & GDX module
- Current limitations (BW, latency)
- Discussion: Future outlook (BPMs, FPGA technology, magnets)

Libera

Libera BPM family

- Circular electron: Libera Brilliance/+, Libera Electron
- Circular hadron: Libera Hadron
- Linear electron: Libera Single-Pass
- Linear hadron: Libera Single-Pass-H
- Very different analogue RF front-ends, as well as different DSP processing

LB+: High-performance BPM system

Libera Brilliance+

- Wide and narrow bandwidth BPM
- Parallel processing & data access
- Sub-micron long-term stability
- EPICS/TANGO/LABVIEW/MATLAB

- Embedded COFB application
- Fibre-link daisy chain connections
- Full Event-receiver & generator support
- Direct RS-485 & optical interfaces to magnet
 power supply controllers

LB+: Installations

Larger installations (>20)

- Taiwan Photon Source (~250)
- MAX-IV (~250)
- Australian Synchrotron (~110)
- KEK PF AR (~90)
- SESAME (~50)
- SOLARIS (~35)
- IHEP (~30)
- Hefei Light Source (~20)
- THOM-X (~20)

LB+: Performance and extensions

LB+: Data streams

LB+: Data streams

Libera Hadron

- GSI/FAIR contributions
- Libera Hadron system components:
- Software controlled Preamplifier
- FTRN timing module (COSYLAB)
 WR protocol support
- SER module

Provides data to the magnet

 Fast data exchange GDX module global position processing (COFB)

FAIR complex

Libera Hadron: Data streams

Libera Hadron: Data streams

Closed Orbit feedback

Current capabilities

- 256 BPM IDs
- 128 magnets
- 6.5 Gbps fibre links
- < 2 µs FOFB calculation latency
- ~ 50 ns latency / BPM
- Eigenmode space (128 modes)
- Fully event-controlled
- 2 kHz closed loop (theoretical limit)

_ibera

GDX module

COFB as a generic MIMO system

$$M_{cx1} = V_{cxe} \cdot PI_{ex1} (S_{mxn}^{-1} \cdot U_{nxn}^{T} \cdot dP_{nx1})$$

COFB as a generic MIMO system

Technologies for building COFB systems

- Communication:
 - Libera Grouping (6.5 Gbit/s)
 - Diamond Communication Controller 2.12 Gbit/s
 - Gigabit Ethernet (1 Gbit/s)
 - Reflected memory
- COFB algorithm calculation:
 - Hard real-time?
 - Centralized vs. distributed (matrix, magnet distribution)
 - Based on: CPU, FPGA, GPU?

COFB control algorithm

NSRRC TPS

- 173 BPM IDs
- 80 magnets
- 10 kS/s data
- ~1.5 µs FOFB calculation
- ~17 µs data concentration (including fibre links)

Courtesy of K.Hsu

Libera

www.i-tech.si

Advanced Photon Source

- Turn-by-turn data in a daisy chain
- Up to ~20 BPMs in a single loop
- User-configurable IIR filtering
- Fast data output links
- ~ 4 µs step response (TBT data)
- FOFB algorithm runs externally

MAX-IV, SOLARIS

- Similar to TPS application
- Double buffering
- Serial output

SESAME, AUSTRALIAN SYNCHROTRON

- Daisy chain support
- Global orbit data output

Orbit feedback examples (hybrid, TLS)

GSI/FAIR (SIS 100)

- 84 Hadron BPMs
- Similar to TPS application
- Double buffering
- Dynamic scaling
- USI serial interface to magnets

COFB: Control algorithm (Hadron)

GSI/FAIR (SIS 100)

- Pulsed/cycle mode gated operation
- Double buffering of configuration data
- Dynamic scaling in order to follow the ramp-up within the cycle

Technologies for building COFB systems

	CPU	FPGA	GPU
Hard real time (jitter)	Acceptable	Excellent	Acceptable
Massive parallelism	Poor	Excellent	Excellent
Latency	Poor	Excellent	Bad
Programming	Easy	Challenging	Medium

Closed Orbit feedback systems

COFB: Effects of latency in a feedback loop

COFB latency contributions and BW limitations breakdown

Latency/BW contributions: BPM

Libera

Latency/BW contributions: Magnets

Latency/BW contributions: COFB

What today's & future technology may bring

- Today's & future FPGA devices offer:
 - Communication speed (GTH/GTY transcievers): 12-25 Mbit/s
 - COFB Latency: $\frac{1}{2}$ to $\frac{1}{4}$ of current values \rightarrow down to 5 us.
 - Higher COFB rates: ~100 kHz range
 - More DSP resources (less relevant)
- Other components in COFB:
 - Higher BW BPMs?
 - Higher BW magnets (in-vacuum)?

Discussion

- What are the expected orbit disturbance characteristics & spectra of next generation accelerators?
- Is there a need for increasing the COFB BW any further?
- Expected magnet BW of next generation accelerators?
- Would any standardized digital interface to the magnets be beneficial and is it realistic to achieve?

Summary

- Libera BPM family available, mature & ready for operation
- Various COFB implementations in operation
- Libera = Openness (FPGA deevlopment kit, full sources)
- We value colaboration with you and look forward continue
- We look forward to see 1st large Libera Hadron deployment in action (COFB @ SIS18)

