Robustness considerations for a fast orbit feedback at hadron synchrotrons

Sajjad Hussain Mirza ${ }^{1,2}$

Dr. Rahul Singh ${ }^{1}$
Dr. Peter Forck ${ }^{1}$

Beam Instrumentation Group, GSI Helmholtz Centre for Heavy Ion Research GSI, Darmstadt
${ }^{2}$ TEMF, TU, Darmstadt Germany

Outline

1. GSI and FAIR project
2. Upgrade of SIS18

* Robustness requirements of SIS18 Closed orbit feedback (COFB) system

3. Global orbit correction methods

* Harmonic analysis of the perturbed orbit
* Singular value decomposition (SVD) of response matrix
* Missing connection between two methods

4. Exploitation of Circulant symmetry in response matrix

* Simple symmetry
* Nearest-Circulant approximation
- Application of symmetry exploitation for subtracting the dispersion-induced orbit shift
* Block-Circulant symmetry in response matrix

5. Characterizing the effect of model mismatch on orbit correction

* Demonstration in COSY synchrotron Julich

6. Summary

GSI and FAIR: brief introduction

GSI

- UNILAC(2-11.4 MeV/u)
- SIS18(0.010-2 GeV/u)
- Experimental storage ring (ESR)
- Fragment separator FRS FAIR
- GSI and SIS100
- SIS100 (0.2- 2.7 GeV/u)

GSI Helmholtzzentrum für Schwerionenforschung

Specialties

- Large range of ions (p to U)
- Variable charge states
- Ramp rates more than $10 \mathrm{~T} / \mathrm{s}$
- Variable ramps (0.1 to 1 s)
- Magnet power supplies start at 3% of full power at injection
- Beam size few cm

SIS18 upgrade (as booster ring for SIS100)

Closed orbit perturbation (distortion)

Perturbed orbit due to single error

$$
y(s)=\theta \frac{\sqrt{\beta\left(s_{0}\right) \beta(s)}}{2 \sin \left(\pi Q_{y}\right)} \cos \left(\left|\mu(s)-\mu_{s 0}\right|-\pi Q_{y}\right)
$$

θ is the kick provided by field error $\beta(s)$ is the beta function at kick location $\mu(s)$ is the phase advance
Q is the tune of the machine

$$
y_{c}(s)=\sum_{i=1}^{N} \theta_{i} \frac{\sqrt{\beta\left(s_{i}\right) \beta(s)}}{2 \sin \left(\pi Q_{y}\right)} \cos \left(\left|\mu(s)-\mu_{s i}\right|-\pi Q y\right)
$$

$$
[\mathrm{Y}]_{m \times 1}=[\mathrm{R}]_{m \times n}[\theta]_{n \times 1}
$$

\mathbf{R} is called the orbit response matrix

Closed orbit perturbations in SIS18

Features of planned SIS18 COFB system

On-ramp orbit correction is planned
lons have no synchrotron damping to restore beam quality at high energy

Features of planned SIS18 COFB system

* Online updating of the machine model?
* How many models required for a given ramp?
* Do we really need to update the ORM?
* What if we use wrong ORM for the orbit correction and what are boundaries?

Uncertainty modeling

Orbit correction methods

Outline

3. Global orbit correction methods

* Harmonic analysis of the perturbed orbit
* Singular value decomposition (SVD) of response matrix
* Missing connection between two methods

Harmonic analysis (global correction)

$$
\begin{aligned}
& y(s)=\theta \frac{\sqrt{\beta\left(s_{0}\right) \beta(s)}}{2 \sin \left(\pi Q_{y}\right)} \cos \left(\left|\mu(s)-\mu_{s 0}\right|-\pi Q_{y}\right) \\
& t=\frac{\sqrt{\beta_{0}} \theta}{2 \sin (\pi Q)} \quad \eta=\frac{y}{\sqrt{\beta}} \quad \varphi=\frac{\mu}{Q}
\end{aligned}
$$

$$
\eta=t \cos Q\left(\left|\varphi(s)-\varphi_{s 0}\right|-\pi\right)
$$

$$
\eta=t \sum_{k=1}^{n}\left(\sigma_{k, r} \cos k \varphi+\sigma_{k, i} \sin k \varphi\right)
$$

$$
\sigma_{k}=\frac{1}{2 \pi} \frac{2 Q}{Q^{2}-k^{2}}
$$

* Modes to be removed (corrected) are selected before-hand
* measured orbit is fitted over corresponding mode e.g. modes around tune frequency
* Corrector strengths are proportional to the Fourier coefficients
* Mathematically complicated procedure

Singular Value Decomposition (SVD)
 $\mathbf{R}=\mathbf{U S V}^{\mathbf{T}}$

Features of SVD

* U and V matrices form the BPM and corrector spaces.
* SVD can decompose and invert (or pseudo-invert) "any" matrix
* A robust algorithm for global orbit correction

Benefits of SVD over harmonic analysis

* One needs not to select the modes to be corrected before correction: decompose in all possible modes
* "simple" matrix inversion
* Mode-by-mode correction is still possible through selecting certain eigenvalues

Columns of U :Black Columns of V : Red

Weaknesses of SVD

$\mathbf{R}=\mathbf{U S V}^{\mathbf{T}}$

* U and V are interconnected through a phase relation
* Over the ramp, updating of all three matrices required
* Uncertainty modeling is required in all three matrices
* Time complexity of the order of n^{3}, n being dimension of matrix
\& Loss of physical meaning of modes (interpolation)
* Fourier coefficients of harmonic analysis have been proposed for uncertainty modeling

S. Gayadeen, "Synchrotron Electron Beam Control", Ph.D. thesis, St. Hugh's College, University of Oxford, UK, 2014.

Columns of U:Black Columns of V: Red

Outline

4. Exploitation of Circulant symmetry in response matrix

* Simple symmetry
* Nearest-Circulant approximation
- Application of symmetry exploitation for subtracting the dispersion-induced orbit shift
* Block-Circulant symmetry in response matrix

Symmetry exploitation in SIS 18 vertical ORM

$$
\begin{aligned}
& \beta_{b p m 1}=\beta_{b p m} 2=\beta_{b p m} 3 \cdots=\beta_{b p m 12} \\
& \beta_{\text {corr } 1}=\beta_{\text {corr } 2}=\beta_{\text {corr } 3} \cdots \cdots=\beta_{\text {corr } 12} \\
& \Delta \mu_{b p m}=\text { constant } \\
& \Delta \mu_{\text {corr }}=\text { constant }
\end{aligned}
$$

$$
R=\left[\begin{array}{cccccc}
R_{1} & R_{2} & R_{3} & R_{4} & \cdots & R_{n} \\
R_{n} & R_{1} & R_{2} & R_{3} & \cdots & R_{n-1} \\
R_{n-1} & R_{n} & R_{1} & R_{2} & \cdots & R_{n-2} \\
R_{n-2} & R_{n-1} & R_{n} & R_{1} & \cdots & R_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
R_{2} & R_{3} & R_{4} & R_{5} & \cdots & R_{1}
\end{array}\right]
$$

Each row is cyclic shift of previous row
All diagonal elements are identical

Reference: Philips J.Davis, Circulant matrices, (1994), Chelsea

Such a square matrix is called
Circulant Matrix

Diagonalization of a Circulant matrix

$$
\begin{aligned}
& R=\left[\begin{array}{cccccc}
R_{1} & R_{2} & R_{3} & R_{4} & \cdots & R_{n} \\
R_{n} & R_{1} & R_{2} & R_{3} & \cdots & R_{n-1} \\
R_{n-1} & R_{n} & R_{1} & R_{2} & \cdots & R_{n-2} \\
R_{n-2} & R_{n-1} & R_{n} & R_{1} & \cdots & R_{n-3} \\
\vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
R_{2} & R_{3} & R_{4} & R_{5} & \cdots & R_{1}
\end{array}\right] \\
& \sigma_{k}=\sigma_{r k}+j \sigma_{i k}=\sum_{i}^{n-1} R_{n} e^{-j 2 \pi k i / n} \\
& \mathrm{R}=\left[\begin{array}{ccc}
F_{11} & \cdots & F_{1 m} \\
\vdots & \ddots & \vdots \\
F_{m 1} & \cdots & F_{m m}
\end{array}\right]\left[\begin{array}{ccc}
\sigma_{1} & \cdots & 0 \\
\vdots & \sigma_{2} & \vdots \\
0 & \cdots & \sigma_{n}
\end{array}\right]\left[\begin{array}{ccc}
F_{11} & \cdots & F_{1 n} \\
\vdots & \ddots & \vdots \\
F_{n 1} & \cdots & F_{n n}
\end{array}\right] \longleftarrow \\
& F_{k}=F_{k c}+j F_{k s} \quad F_{k s}=\sin \left(\frac{2 \pi k m}{n}+\varphi_{k}\right) \\
& \text { Inverse is straightforward } \\
& R^{-1}=F^{*} H^{-1} F \\
& H^{-1}=\operatorname{diag}\left(\frac{1}{\sigma_{k}}\right), \mathrm{k}=1 \ldots \mathrm{n} \\
& \text { Standard Fourier matrix }
\end{aligned}
$$

Equivalence of DFT and SVD

Why to do SVD when Circulant symmetry exits?
Herbert Karner et al. Spectral decomposition of real Circulant matrices, Linear Algebra and its Applications,

Nearest-Circulant symmetry SIS18 horizontal plane

Dispersion effect in closed orbit

Mismatch between RF frequency and the dipole field

$$
\Delta x_{D}(s)=D(s) \frac{\Delta p}{p}
$$

$$
\Delta x=\Delta x_{c o}+\Delta x_{D}(s)
$$

an attempt to correct it can saturate the corrector magnets.

Induced dispersion and closed orbit in x-plane Experiment at SIS18

Block Circulant symmetry SIS100

$$
\begin{aligned}
& \mathbf{R}_{B C}=\operatorname{circ}\left(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \ldots . . \mathbf{A}_{n}\right) \\
& \mathbf{R}_{B C}=\sum_{k=0}^{n-1}\left(\pi_{m}^{k} \otimes \mathbf{A}_{k+1}\right) \\
& \mathbf{R}_{B C}=\left(\mathbf{F}_{m} \otimes \mathbf{F}_{n}\right) \operatorname{diag}\left(\mathbf{M}_{1}, \mathbf{M}_{2}, \mathbf{M}_{3}, \ldots \mathbf{M}_{n}\right)\left(\mathbf{F}_{m} \otimes \mathbf{F}_{n}\right)
\end{aligned}
$$

$$
\begin{gathered}
\mathbf{D}=\left[\begin{array}{cccccc}
\mathbf{M}_{1} & 0 & 0 & . & . & 0 \\
0 & \mathbf{M}_{2} & 0 & . & . & 0 \\
. & \cdot & . & . & . & 0 \\
. & . & . & . & . & 0 \\
0 & 0 & 0 & . & . & \mathbf{M}_{n}
\end{array}\right] \\
\mathbf{R}^{+}{ }_{B C}=\left(\mathbf{F}_{m} \otimes \mathbf{F}_{n}\right)\left(\mathbf{D}^{+}\right)\left(\mathbf{F}_{m} \otimes \mathbf{F}_{n}\right)
\end{gathered}
$$

Outline

5. Characterizing the effect of model mismatch on orbit correction

* Demonstration in COSY synchrotron Julich

6. Summary

Characterizing the effect of spatial model mismatch concept of spatial bandwidth

SIS18 is a unique synchrotron in terms of flexibility of operational scenarios.
Variable optics \qquad Orbit response matrix variations

* How much ORM variation we can live with?
* How to quantify the effect of "wrong" model on orbit correction?

Characterizing the effect of spatial model mismatch concept of spatial bandwidth

SIS18 is a unique synchrotron in terms of flexibility of operational scenarios.
Variable optics \longrightarrow Orbit response matrix variations

* How much ORM variation we can live with?
* How to quantify the effect of "wrong" model on orbit correction?

Characterizing the effect of spatial model mismatch Mathematical treatment

Let $\theta[\mathrm{k}]$ is the controller output at $\mathrm{k}^{\text {th }}$ iteration

$$
\theta[k]=\theta[k-1]+a e[k]+b e[k-1]+c e[k-2]
$$

where,

$$
a=\left(k_{p}+k_{i} \frac{T_{s}}{2}+\frac{k_{d}}{T_{s}}\right) \quad b=\left(-k_{p}+k_{i} \frac{T_{s}}{2}-\frac{2 k_{d}}{T_{s}}\right) \quad c=\frac{k_{d}}{T_{s}}
$$

Characterizing the effect of spatial model mismatch Mathematical treatment

$$
\begin{aligned}
\Theta & =\mathbf{R}^{\prime-1} \Delta z_{0} \longrightarrow \text { Corrector settings } \\
r_{1} & =\Delta z_{0}-\mathbf{R} \Theta \longrightarrow \text { First iteration residual } \\
r_{1} & =\Delta z_{0}-\mathbf{R R}^{\prime-1} \Delta z_{0} \\
r_{1} & =\left(\mathbf{I}-\mathbf{R R}^{\prime-1}\right) \Delta z_{0} \\
r_{n} & =\left(\mathbf{I}-\mathbf{R R}^{\prime-1}\right)^{n} \Delta z_{0} \longrightarrow
\end{aligned}
$$

Characterizing the effect of spatial model mismatch Mathematical treatment

On-ramp model variation in SIS18

Simulations: Orbit correction using injection ORM

First iteration residual \longrightarrow

Effect of wrong model on the orbit correction

 Experiment: y-plane of COSY synchrotron Julich (31 Oct 2018)ORM was varied as a function of betatron tune (3.52-4.18) Machine tune was 3.62

Thanks to Lorentz Bernd and Christian Weidemann for helping in the experiment.

Summary

1. On-ramp orbit correction is planned for SIS18 synchrotron of GSI
2. Symmetry exploitation in the ORM can result into faster matrix inversion than SVD
3. DFT based diagonalization also gives physical meaning to SVD modes
4. DFT based diagonalization provides the missing connection between SVD and harmonic analysis
5. Nearest-Circulant approximation can be made for slightly broken symmetries
6. Block-wise Circulant symmetry can also be applied for larger lattices (more than one BPMs per cell)
7. Spatial sensitivity function is defined as tool for the quantification of the effect of model mismatch on the orbit correction
8. 2 to 3 ORM will be required over the ramp orbit correction for SIS18
9. Application of spatial sensitivity function has been demonstrated in COSY synchrotron Julich

I would like to acknowledge Dr. Guenther Rehm for nice discussions during my visit to Diamond Light Source

