

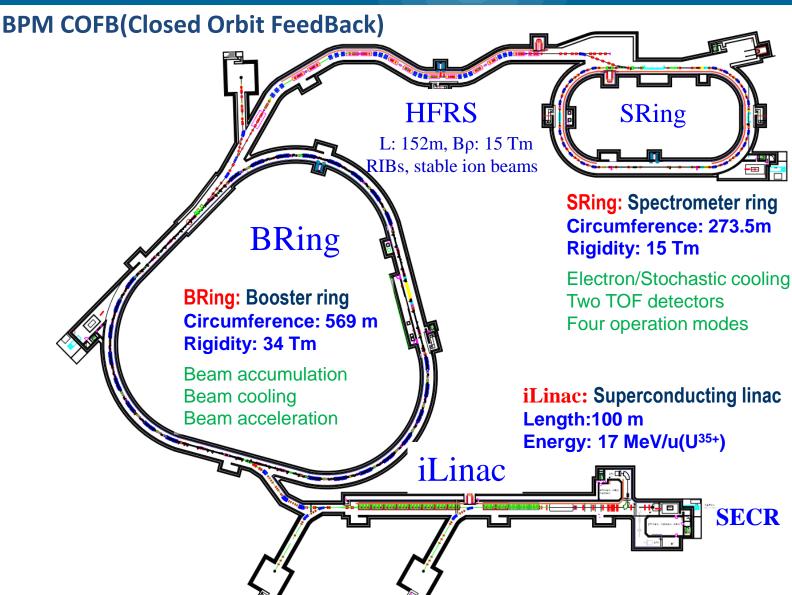
# The design & progress of bunch by bunch measurement system for HIAF

- Min Li, Ruishi Mao, Tiecheng Zhao, Yongliang Yang, Yonggan Nie, Yucong Chen, Weilong Li, Shengpeng Li, Xiaojuan Wei
- Email: <u>limin@impcas.ac.cn</u>
- Beam diagnostics department
- Institute of Modern Physics, Chinese Academy of Science





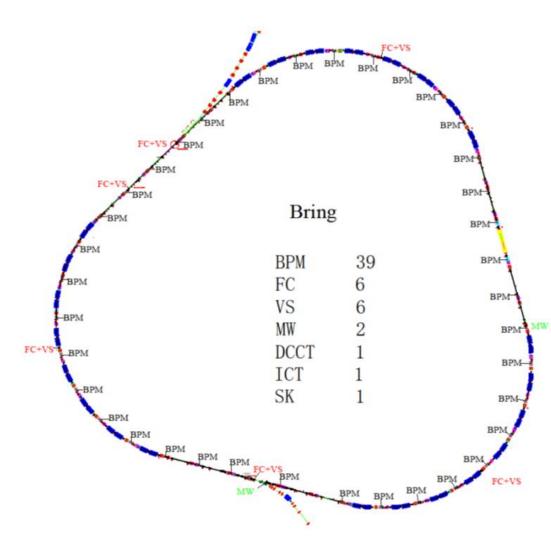
### Outlines



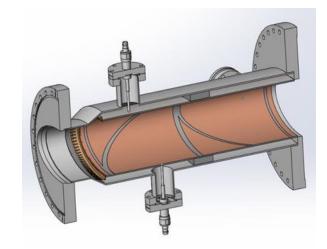

- HIAF accelerator system
  - Layout of HIAF
  - Parameters of COFB at HIAF
  - Requirements of COFB at HIAF
- Key technologies of COFB
  - Data communication between BPM systems
  - Data processing algorithm
- Candidate COFB design at HIAF
  - Optional solution 1: Libera Hadron
  - Optional solution 2: Traditional DAQ system(mainly represented by NI)
- Summary



#### **HIAF** accelerator system








#### Layout of beam diagnostics devices at BRing



#### **39 Ceramic BPMs (ellipse) COFB(Closed Orbit FeedBack)**

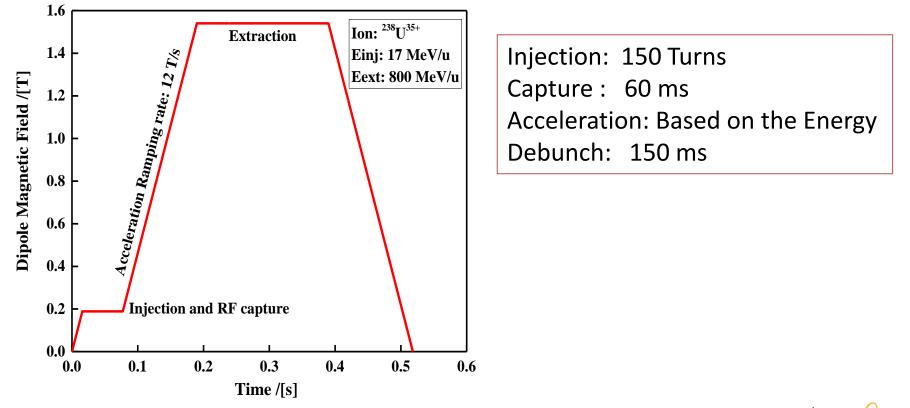


**Resolution:** 0.1% of vacuum chamber diameter

Peter Fork, Piotr Kowina, Dmitry Liakin Beam Position Monitors, 2008 CAS






#### **HIAF** accelerator system



ALBA

### **Position & charge monitor for**

- Bunch repetition rate: 200 KHz to 1.5 MHz
- Bunch length: 3 us @ injection down to 1 ns @ extraction
- Cycle duration: 0.45~10 second



#### **HIAF** accelerator system



### **Requirements of COFB** Injection-acceleration-extraction

- Store and provide position information of all bunches in the acceleration cycle
  - raw data (~100ms)
  - bunch-by-bunch data
- Slow position stream: several Hz(EPICS PV variable)
- Fast position stream(10KHz,provisional):Orbit feedback purposes
- Calculate correction factors and send to magnets(dedicated server)

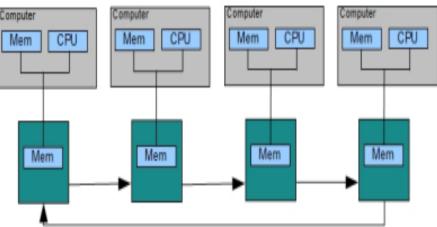




- HIAF accelerator system
  - Layout of HIAF
  - Parameters of COFB at HIAF
  - Requirements of COFB at HIAF
- Key technologies of COFB
  - Data communication between BPM systems
  - Data processing algorithm
- Candidate COFB design at HIAF
  - Optional solution 1: Libera Hadron
  - Optional solution 2: Traditional DAQ system(mainly represented by NI)
- Summary

### **Data communication**



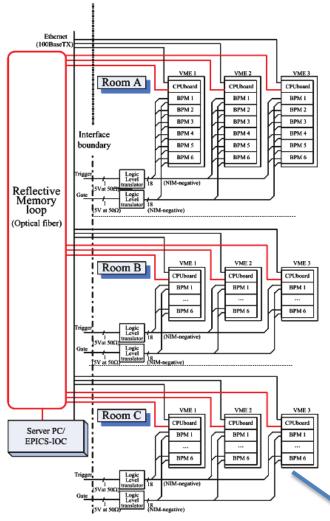

- Reflective Memory
- RDMA(Remote Direct Memory Access)
- User-defined protocol based on commercial products



### Data communication-reflective memory HAF

- **Reflective Memory** is a means to share common data between different and independent systems deterministically in real time .
- Applications reads data from the local adapter card device memory.

- a plug-in adapter card with onboard device memory.
- CPU is involved.
- Network speed: 2.12 Gigabit/s
- Max Nodes:256
- Supported buses: VME、PCI、PMC、 Compact PCI、Multibus I etc
- Determined data transfer time : data transfer latency between nodes is less than 400 nanoseconds .




- A ring network topology connects the systems together
- Star connection with reflective memory hub






### Data communication-reflective memory HAF



The arrangement of all 54 BPM signal processor units in RCS

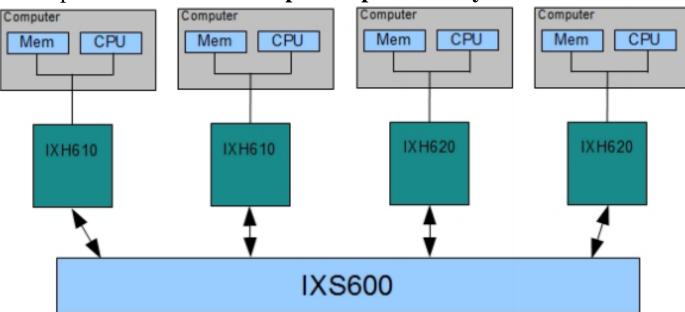
- Zhenghong hangke in Shanxi Province: produce the reflective memory cards with all the supported buses and is compatible with GE 5565 completely. <u>http://zhhktech.jdol.com.cn/</u>
- Shenzhou feihang in Beijing : produce reflective memory cards with custom bus, has the ability of developing the FGPA IP core for reflective memory
- http://www.senfetech.com/nav/1.html



Laboratory test



HIRFL-TR4 test with beam


[1]N. Hayashi, M. Kawase et.al, **Beam position monitor system of J-PARC RCS**, Nuclear Instruments and Methods in Physics Research A 677 (2012) 94–106



### Data communication-reflective memory

### **Dolphin Reflective memory**

- utilize the computer system's **standard main memory**
- combined with regular PCI Express technology
- significant performance and cost benefits: the host adapters do not have any memory used for storing reflective memory data
- The PCIe switch provides a mechanism for simultaneous multi-cast of data to all connected ports with a **measured port to port latency less than 200 nanoseconds**.



[1]http://www.dolphinics.com/products/embedded-system-reflective-memory.html
 [2]W. Mansour, N. Janvier, P. Fajardo. HIGH PERFORMANCE RDMA-BASED DAQ PLATFORM
 OVER PCIE ROUTABLE NETWORK. ICALEPCS2017, Barcelona, Spain. ESRF, Grenoble, France.

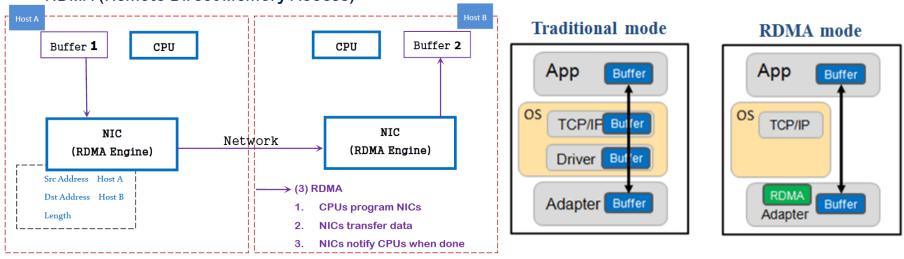


### Data communication-reflective memory

#### **Details for some popular reflective memory solutions**

| Feature                    | Dolphin Express IX    | GE Fanuc                  | SCRAMNet GT               |
|----------------------------|-----------------------|---------------------------|---------------------------|
| Standard                   | PCI Express           | Proprietary               | Proprietary               |
| Network speed              | 40 Gigabit/s          | 2.12 Gigabit/s            | 2.5 Gigabit/s             |
| Network topology           | Switch                | Ring                      | Ring                      |
| Max nodes                  | 56 / 20 *3            | 256                       | 256                       |
| Max distance end to end    | 600 meter             | Up to 10 km               | Up to 30 km               |
| Cables                     | iPass Copper or fiber | Fiber                     | SFP copper or fiber       |
| Data Deliver Jitter        | 200 ns pr switch hop  | 1 us pr node              | Less than 1 us pr node    |
| 8 nodes                    | 1us                   | 8 us                      | < 8 us                    |
| 20 nodes                   | 1.4 us                | 20 us                     | < 20 us                   |
| 56 nodes                   | 1.4 us                | 56 us                     | < 56                      |
| Transfer methods           | PIO, DMA *1, PCIe     | PIO, DMA                  | PIO                       |
|                            | master                |                           |                           |
| Write performance PIO      | 2650 Megabytes/s      | 26 Megabytes/s            | 210 Megabytes/s           |
| Write performance DMA      | *1                    | 170 Megabytes/s           | NA                        |
| Read performance PIO       | 20 Gigabytes/s *2     | 6 Megabytes/s             |                           |
| Read performance DMA       | 3400 Megabytes/s *1   | 408 Megabytes/s           | NA                        |
| Number of multicast groups | 4                     | 1                         | 1                         |
| Max Memory configuration   | 4 x 2 Gigabytes       | 256 Megabytes             | 128 Megabytes             |
| Type of Memory             | System main memory    | Device memory             | Device memory             |
| Fixed memory settings      | No, software          | Yes, card is ordered with | Yes, card is ordered with |
|                            | configurable          | a specific memory size    | a specific memory size    |
| Memory is cacheable        | Yes                   | No                        | No                        |
| Remote interrupts          | Yes                   | Yes                       | Yes                       |

White paper: Dolphin Express IX Reflective Memory / Multicast




### **Data communication-RDMA**



ALBA

- **DMA:** Direct memory access is an ability of a device to access host memory directly, without the intervention of the CPU(s).
- **RDMA** (Remote DMA): is the ability of accessing (i.e. reading from or writing to) memory on a remote machine without interrupting the processing of the CPU(s) on that system
- Low latency
- High Bandwidth



#### RDMA (Remote Direct Memory Access)

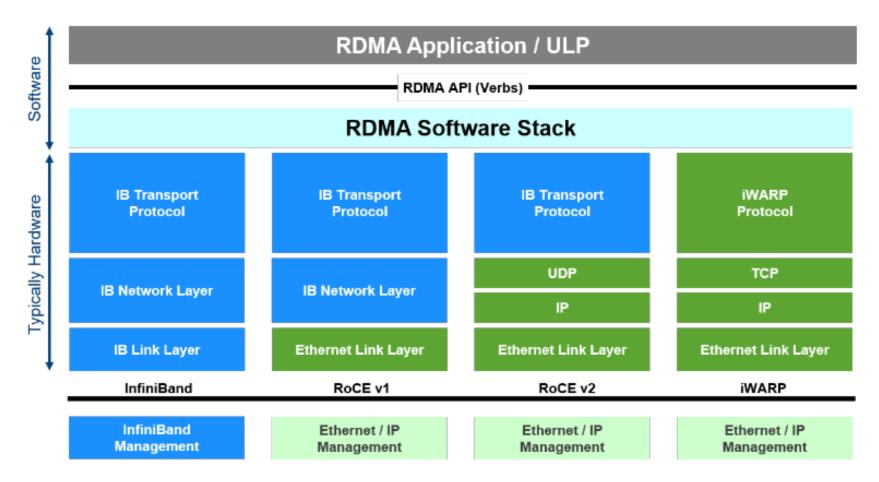
### **Data communication-RDMA**



### **Key attributes of RDMA**

- Zero-copy applications can perform data transfer *without the network software stack* involvement
- **Kernel bypass** applications can perform data transfer directly from userspace *without the need to perform context switches*.
- No CPU involvement applications can access remote memory *without consuming any CPU* in the remote machine.
- **Message based transactions** the data is handled as discrete messages and not as a stream, which *eliminates the need of the application to separate the stream into different messages/transactions*.
- Scatter/gather entries support RDMA supports natively working with multiple scatter/gather entries .

https://www.rdmamojo.com/2014/03/31/remote-direct-memory-access-rdma/





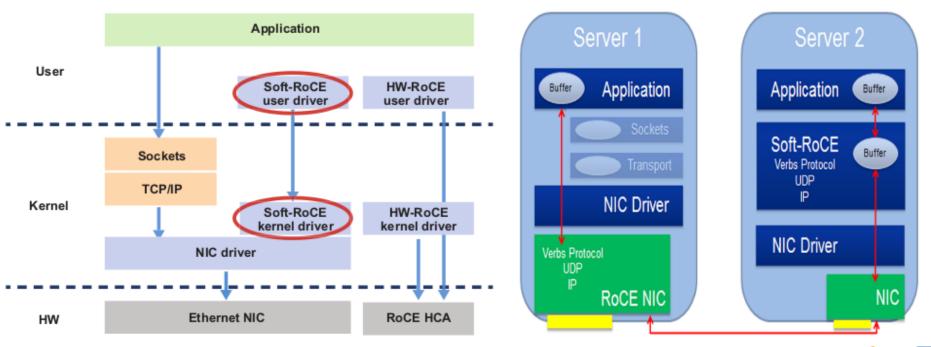

#### **Network protocols which support RDMA**



Green content defined by IEEE / IETF



https://www.rdmamojo.com/2014/03/31/remote-direct-memory-access-rdma/ Next Generation Beam Position Acquisition and Feedback Systems, Barcelona - Spain


### **Data communication-RDMA**



ALB

#### **SoftRoCE:**http://www.roceinitiative.org/wpcontent/uploads/2016/11/SoftRoCE\_Paper\_FINAL.pdf

- Serving as the counterpart to hardware-based RDMA over Converged Ethernet (RoCE) solutions is Soft-RoCE
- a software implementation of the RDMA transport
- Soft-RoCE avoids almost all system calls, providing zero-copy on send transactions and a highly efficient one-copy on receive, in which the destination buffer is guaranteed to be pinned and accessible to all CPUs.



### **Data communication-RDMA**



#### **Applications of RDMA**

Los Alamos National Laboratory (2011)

| Peak Values       | IB QDR | RoCE   | Soft RoCE | No RDMA |
|-------------------|--------|--------|-----------|---------|
| Latency (µs)      | 1.96   | 3.7    | 11.6      | 21.09   |
| One-way BW (MB/s) | 3024.8 | 1142.7 | 1204.1    | 301.31  |
| Two-way BW (MB/s) | 5481.9 | 2284.7 | -         | 1136.1  |

#### Xilinx Embedded Target RDMA Enabled:

- Xlinix published V1.0 IP core supported RoCE in March, 2018
- https://www.xilinx.com/products/intellectual-property/etrnic.html

https://www.xilinx.com/support/documentation/ip\_documentation/etrnic/v1\_0/pg294-etrnic.pdf

#### **Applications in other Accelerators:**

- W. Mansour, N. Janvier, P. Fajardo. HIGH PERFORMANCE **RDMA-BASED** DAQ PLATFORM OVER PCIE ROUTABLE NETWORK. ICALEPCS2017, Barcelona, Spain. **ESRF, Grenoble, France**.
- P. Bastl, P. Pivonka, B. Plötzeneder, O. Janda. HARDWARE ARCHITECTURE OF THE ELI BEAMLINES CONTROL AND DAQ SYSTEM. ICALEPCS2017, Barcelona, Spain. ELI Beamlines/Institute of Physics of the ASCR.





#### Mainly represented by NI Adaptor for FlexRIO

| Channel Specifications             | NI-6584                       | NI-6591R                                                           |
|------------------------------------|-------------------------------|--------------------------------------------------------------------|
| Direction control of data channels | 16                            | 8                                                                  |
| I/O compatibility                  | RS485/422                     |                                                                    |
| Signal type                        | differential                  |                                                                    |
| Maximum data rate                  | 16 Mbit/s per channel nominal | 500 Mbps to 8 Gbps and<br>9.8 Gbps to 12.5 Gbps,<br>characteristic |
| Connector                          | VHDCI-to-Eight DB9            | Mini-SAS HD                                                        |



#### **Data Processing algorithm**



- Beam position is calculated with FFT
  - Search for peaks within a range(J-PARC RCS)
  - at the determined harmonic of RF frequency(eg: at the 2<sup>nd</sup> harmonic, J-PARC MR )
- Signal Integration (HIRFL-CSRm)
- Root- Sum-Squre Calculation(KEK,GSI-SIS18)
- Least-Square Fit of Difference signal to Sum signal(CRYRing@ESR)

[1] N. Hayashi, M. Kawase et.al, Beam position monitor system of J-PARC RCS, Nuclear Instruments and Methods in Physics Research A 677 (2012) 94–106.

[2]Shuichiro Hatakeyama, et al, THE DATA ACQUISITION SYSTEM OF BEAM POSITION MONITORS IN J-PARC MAIN RING, Proceedings of IPAC'10, Kyoto, Japan.

[3] Matjaž Žnidarčič, Hadron Beam Position Processor user manual.

[4] P. Miedzik, H. Bräuning, et.al, A MicroTCA BASED BEAM POSITION MONITORING SYSTEM AT CRYRING@ESR, ICALEPCS2017, Barcelona, Spain

[5] P. Leban, R. Hrovatin, T. Obina, First-turn and stored beam measurements with single bunch filling pattern using time-domain processing at kek-pf, in: Proceedings of BIW 2012, 2014, Newport News, Virginia, USA.

[6] R. Singh, Tune Measurement at GSI SIS-18: Methods and Applications, Technical University of Darmstadt, 2013.

[7] A. Reiter, R. Singh, O. Chorniy, Statistical Treatment of Beam Position Monitor Data (GSI)

#### **Other key technologies**



- **Physical calculation**
- Power supply calculation

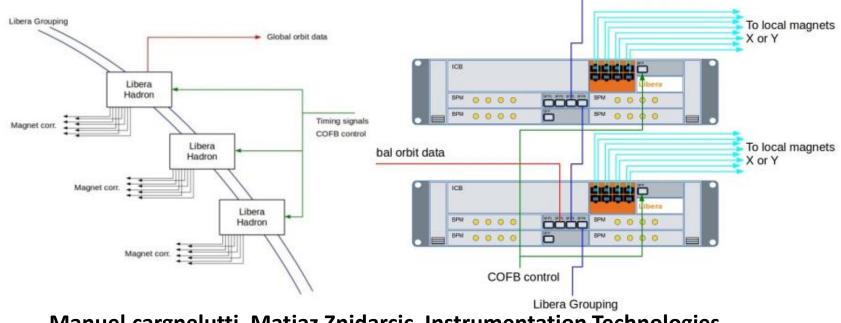


### Outlines



- HIAF accelerator system
  - Layout of HIAF
  - Parameters of COFB at HIAF
  - Requirements of COFB at HIAF
- Key technologies of COFB
  - Data communication between BPM systems
  - Data processing algorithm
- Candidate COFB design at HIAF
  - Optional solution 1: Libera Hadron
  - Optional solution 2: Traditional DAQ system(mainly represented by NI)
- Summary

### **Optional solution 1: Libera Hadron**




#### Orbit feedback in SIS100 (COFB)

#### similar to FAIR

84 BPM modules interconnected in the closed orbit feedback

- Position data from 84 BPMs is grouped together
- Positions are compared with "GOLDEN ORBIT"
- Correction factors are calculated and applied

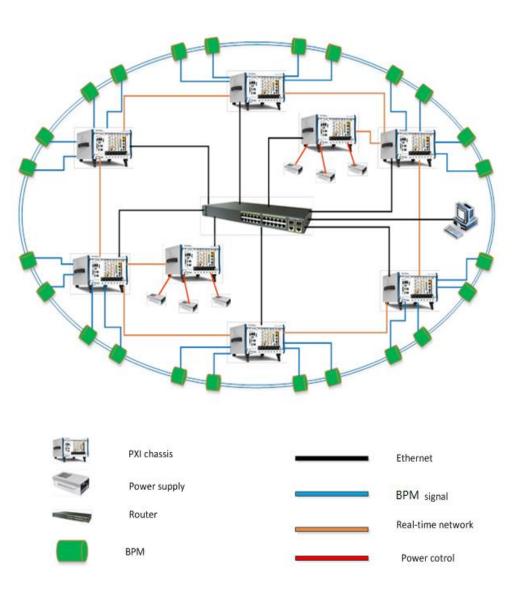


Manuel.cargnelutti, Matjaz Znidarcic, Instrumentation Technologies,



### **Optional solution 1: Libera Hadron**




- Instrumentation technologies(two sets are ordered)
  - Libera Hadron chassis, controllers
  - BPM Modules
  - Software controlled Preamplifier(Amplifier 110)
  - FTRN timing module supporting WR
  - Communication: SER module for magnet controls
  - GDX module for orbit correction

#### **Optional solution2:Traditional DAQ system-NI**



### System framework :

- **Digital BPM:** each 4 BPMs as a group sharing the same DAQ and control chassis.
- beam processing module : high speed FPGA sampling rate more than 240MSa/s
- Timing processing module: WR
- communication between chassis:
   RDMA
- The controller has high speed rear panel to meet the demands of high speed communication between cards.







### NI PXIe& FlexRIO

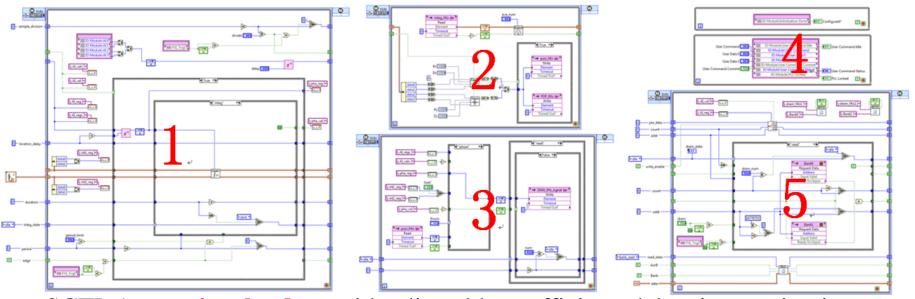
- Contronller&chasis:8135&1082
- BPM module:7966R&5734(each chassis can hold 4 BPM modules)
- RF trigger capture module:7966R&5734
- Communication module:7966R&6584 or 6591
- PXIe timing module supporting WR(NI & CERN)



ALBA

#### **Functions of BPM module:**

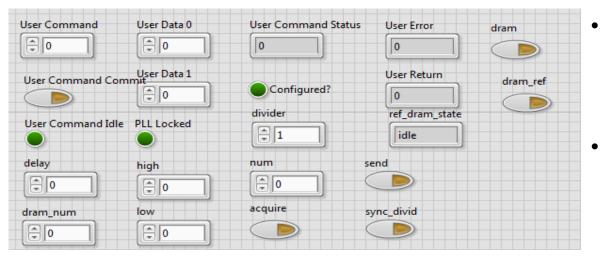
- A pair of 7966&5734 implements the BPM signal processing function for 4 pickups of each BPM
- Configure the coupling mode, sample clock,
- Adjust the integral interval, sample delay,
- Double integral, moving average(averaged points is adjustable)
- Real-time data monitoring: raw data, data in the integral interval, data after one integration, data after double integration
- storage :save the data on demand with the real time ring buffer.


Next Generation Beam Position Acquisition and Feedback Systems, Barcelona - Spain

. . . . . .



ALB


### **BPM module : 5 SCTL**



- SCTL 1: acquire the data with adjustable coefficient, delay, integration in special integral interval
- SCTL2: **data processing**: average & relational operation of the integrated data then send the data to P2P FIFO
- SCTL3: collect the data from SCTL1&2, send to HOST
- SCTL4: configure & monitor the status of NI 5734
- SCTL5: implement the ring storage of raw data and upload data.



### **RF signal processing module: 3 SCTL**



- PLL Locked: the sample rate has been synchronized to the external reference clock at 10MHz of the chassis
- divider: down sampling number which is 120/S (S) in the range of 1~255

- SCTL 1: acquire the RF signal with adjustable coefficient, delay, rising edge detection, data upload and the synchronization
- SCTL2: configure & monitor the status of NI 5734
- SCTL3: implement the ring storage of raw data and upload data.





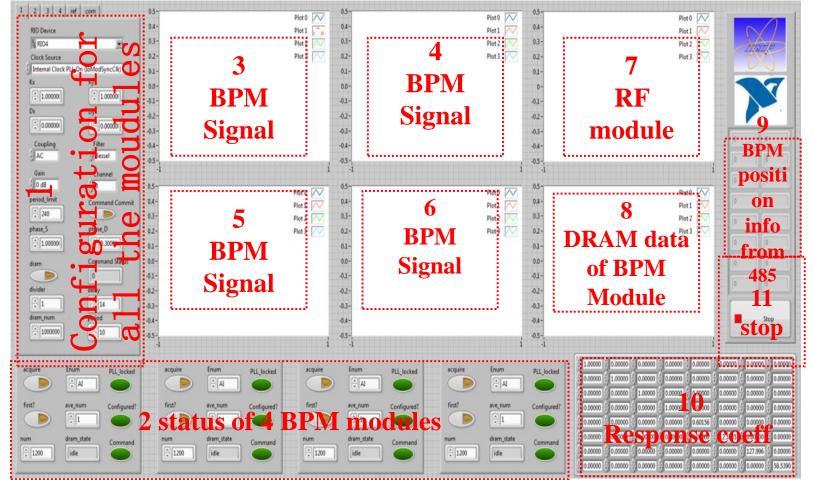
|          |          | receive                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|----------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Vector b | Vector c | posi07                                                                                                                       | posi815                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0 0      | 00       | posi0                                                                                                                        | posi0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |          | 0                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          | posi1                                                                                                                        | posil                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |          | 0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 70       |          |                                                                                                                              | posi2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| T 0      |          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 0<br>  |          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| - 0      |          |                                                                                                                              | posi3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ÷ 0      | 0        | 0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |          | posi4                                                                                                                        | posi4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |          | 0                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |          | posi5                                                                                                                        | posi5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |          |                                                                                                                              | posi6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          |          | posi7                                                                                                                        | posi7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          |          | 0                                                                                                                            | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | Vector b | $ \begin{array}{c}  \hline  \hline $ | Vector b         Vector c         posi07           0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 |

- PLL Locked: the sample rate has been synchronized to the external reference clock at 10MHz of the chassis
- divider: down sampling number which is 120/S (S) in the range of 1~255

Data communication was planed to implement with NI 6485 and will be substituted by RoCE.

- SCTL 1: implement receive logic of BPM data
- SCTL2: receive P2P data and update the data that need to be sent out in real time
- SCTL3: implement send logic of BPM data
- While loop: do the response matrix calculation



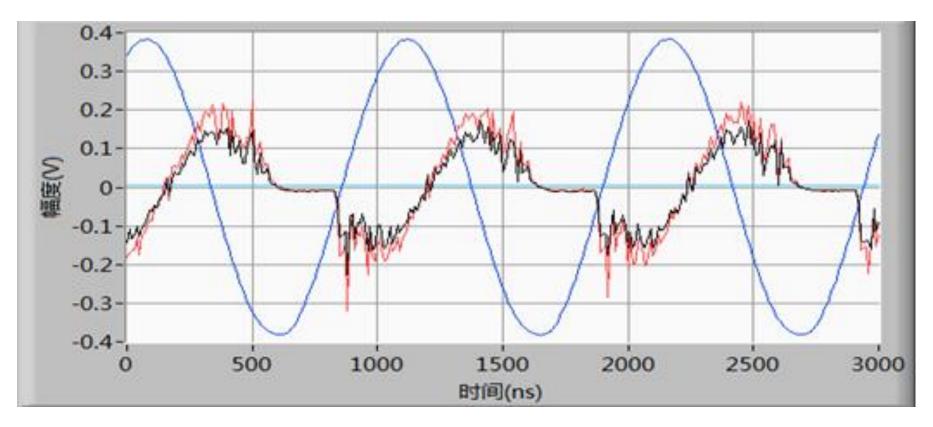

#### **Optional solution2:Traditional DAQ system-NI**



ALBA

ARÍES

#### **Host GUI**

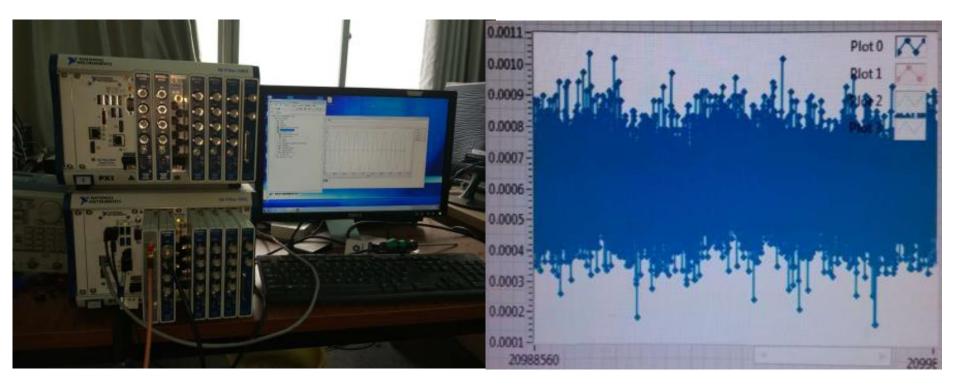



- The set of the hardware and software has been tested with beam at CSRm
- The algorithm need to be optimized
- The communication between beam diagnostics and power supply has not be implemented

#### **Optional solution2:Traditional DAQ system-NI**



#### System test with beam at HIMM in Wuwei city Heavy Ion Medical Machine




#### The red and black plots are the two opposite pickups The blue plot the RF signal





#### Laboratory test with NI devices



#### Turn by turn test in the laboratory ( with NI PXIe7966 & 5734 Card) The position resolution is:0.003\*100=0.03mm=30um



### Outlines



- HIAF accelerator system
  - Layout of HIAF
  - Parameters of COFB at HIAF
  - Requirements of COFB at HIAF
- Key technologies of COFB
  - Data communication between BPM systems
  - Data processing algorithm
- Candidate COFB design at HIAF
  - Optional solution 1: Libera Hadron
  - Optional solution 2: Traditional DAQ system(mainly represented by NI)
- Summary

### Summary



#### Foreseen

- Design scheme
  - The alternative solution of COFB For HIAF is between Libera Hadron and the traditional commercial DAQ system( NI or MicroTCA)
  - A promising alternative maybe the physics-driven standard MicroTCA.4 because of its high flexibility and modularity, redundant key components, agnostic backplane and advanced management. The Rapid I/O is the preferred choice for the backplane communication.
  - We may use the RDMA over Converged Ethernet (RoCEV2, FPGA IP Core) with normal Ethernet infrastructure as the low-latency network for the data communication of COFB for HIAF
- Data processing algorithm
  - Simulation of Least-Square Fit Approach(GSI) is the determined at present and the more suitable algorithm will be designed and simulated.





#### Plans

- Hardware preparation
  - Two sets of Libera Hadron are bought with amplifier 110s, WR timing, GDX,SER modules, and will be delivered next month
  - Two sets of NI PXI system with new amplifier are prepared
  - Both of the above two sets will be tested and evaluated in December with beam at CSRm (NI 5764 16 bit, 1GS/s, 4 channels maybe substitute NI 5734)
- Data processing algorithm
  - Simulation of Least-Square Fit Approach(GSI) is in progress and will be transplanted to the FPGA to measure bunch-by-bunch beam position and implement the closed orbit feedback
- Data communication between beam diagnostics and power supply will be test in the near two month





## Thanks for your attention



