Tools for data visualization and quality validation
Tutorials

Introduction presentation - N-Dimensional analysis pipeline O(20 min)

Jupyter tutorials:

Part 1. (1 h)
- Data visualization (AliDrawStyle, AliPainter and CSS styles)
- Materialized views (AliExternalInfo)

Part 2. (1 h)
- Selection of good quality data (N-dimension analysis, TMVA)
- Data set comparison based on parametrizations

Tutorials using Jupyter notebook:
- first attempt for Alice tutorial
- tutorial code in git-hub (currently in AliRoot github)
 - https://github.com/alisw/AliRoot/tree/master/STAT/Notebooks
- In the future (I) assume Jupyter notebook (local or on SWAN) to be more used for the troubleshooting, resp for the period performance comparison with user selected data inputs
Overview of tools developed for the QA, performance and calibration monitoring and for the N-dimensional tune on data MC

- Developed within AliRoot
- Planned to be independent package for RUN12 and Run3 analysis
- see latest version of presentations: https://indico.cern.ch/event/686140/contributions/3011435/attachments/1653608/2646159/MultiDimensionalVisualization_O2meeting22052018.pdf

Tools for experts, but also for “standard analysis”

- expert providing aggregated information for “analyzers”

Strategy - experts indicates possible problems (MC/Anchor mismatch) and provides recipe - analysis should show “sensitivity” in physics observable
Detector conditions and corresponding performance change is space and time

- Not all effects described in the MC
 - distortion fluctuation, pile-up, ion tail
 - \(\rightarrow \) correlated efficiency loss, correlated dEdx bias

Recipes under preparation:

- Quality dependent run list
- Quality dependent time series
- See examples in presentation to follow

Strategy:

Experts indicates possible problems (MC/Anchor mismatch) and provides recipe - analysis should show “sensitivity” in physics observable
Tutorials in form of the Jupyter C++ Notebooks

New AliRoot release with ROOT6
 • v5-09-34-01_ROOT6-1

CVMFS ROOT6+Jupyter setup distribution not (yet) fully operational
 • laptop and SWAN setup not operational

Tutorial to be running using AliRoot/AliPhysics from afs according instructions in JIRA:
 • https://alice.its.cern.ch/jira/browse/ATO-448
 • see description part
 • starting servers on lxplus7 using predefined port
Recipe to load environment - should work for everybody

It is similar as for the cmfs installation for alice users

- Choose port to work on, e.g:

  ```
  export JupyPORT=8899
  ```

- `example login as a tpcdrop user`

  ```
  ssh -Y -L 127.0.0.1:$JupyPORT:127.0.0.1:$JupyPORT tpcdrop@lxplus7.cern.ch
  ```

- `source environment form user mivanov`

  ```
  export JupyPORT=8899
  export ALIBUILD_WORK_DIR=/afs/cern.ch/work/m/mivanov/alicess/sw
  export WORKON_HOME="/afs/cern.ch/user/m/mivanov/.virtualenvs/"
  export AliExternalInfoCache="/afs/cern.ch/work/m/mivanov/AliExternalInfoCache"
  source virtualenvwrapper.sh
  workon our_new_env
  /afs/cern.ch/user/m/mivanov/.virtualenvs/our_new_env/bin/alienv enter AliPhysics/latest-master-root6
  export AliRoot_SRC="$ALIBUILD_WORK_DIR/../AliRoot"
  export AliPhysics_SRC="$ALIBUILD_WORK_DIR/../AliPhysics"
  ```

- `download tutorials`

  ```
  cd your/tutorial/directory
  rsync -avz $AliRoot_SRC/STAT/Notebooks .
  cd Notebooks
  ```

- `run jupyter`

  ```
  jupyter notebook --no-browser --ip=127.0.0.1 --port=$JupyPORT
  ```

- `if running sucessfull open http as indicated in the log bellow: e.g`

  ```
  [I 19:30:04.066 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).
  [C 19:30:04.062 NotebookApp]
  
  Copy/paste this URL into your browser when you connect for the first time, to login with a token:
  http://127.0.0.1:8899/?token=ce64e43b2556e0e89ad4f64f511dd452d5baf46f77e5576
  ```
4 demo tutorials prepared planned to be shown today

- More to come to demonstrate full functionality of NDimension pipeline
1.1) Data visualization (AliDrawStyle, AliPainter and CSS styles)

See:

AliDrawStyle - CSS style instead of ROOT TStatyle as an analogue to CSS in HTML

- separation of concerns
- separate styling code (configuration file) and drawing
- possibility to apply re-apply different styles for the same data using CSS functionality
 - presentation style, publication style, QA style
 - http queries
 - working with array of primitives

AliPainter:

- Canvas support
- CSS support
- THn drawing/slicing/fitting
 - interface inspired by ROOT TH and Python
AliExternallInfo class to interface set of materialized views (root trees/tables)

- See presentation slides 17-25

Root tree based interface for information query form different data sources:

- Extension on top of the standard root (in classes described in presentation)
- Drawing, support for metadata (e.g. variable description, axis, title description per data)
- Set of predefined data inputs
 - QA.<subsystem>, QA.<rawDetector>, Lobook.<xxx>, <Monalisa> ...
 - User defined data sources options
- modifying configuration file
 - adding custom input as friend tree (e.g. DCS sensors exported as a tree)
 - used often for TPC calibration fitting, trending, troubleshooting

Example demo:

- query TPC data volume and fit it as function of rate
- Test: do the same studies using TRD information
2.1) Selection of good quality data (N-dimension analysis, TMVA)

Notebook in github:

Demo usage of the information from the TMVA interface fitting TPC QA variables

- TPC QA variable (resolution, efficiency, separationPower) as function of explanatory variables (interaction rate, bz, gain)
- Load TMVA interface function
- Load tree and defining derived information (TTree aliases) and metadata
- CacheTree input variables to tree format usable by TMVA
- Register example methods used for regression
- Emulation of the bootstrap - training repeated several time
- Load array of regression - used later in the array regression evaluation (mean, median, rms)
- Example draw/outlier queries
2.2 Data set comparison based on parametrizations

Jupyter notebook:
- https://github.com/alisw/AliRoot/blob/master/STAT/Notebooks/AliTreeTrending_TPCMCAnchorValidation_Demo.ipynb

Goal
- **Compare MC with the Anchored data period.** Only some part of the functionality as defined in the macro:AliPhysics_SRC/PWGPP/TPC/macros/tpcMCValidation.C+

Alarms definition
- compare data with expectation - "invariants" define differences, ratio
- hierarchy of alarms used

Algorithm to show
- Load input data
- Define alarm aliases in InitTPCMCValidation
- Alarms TPC/ITS/TRD specific
- Example- Redefine some alarms
- Make Status plot draw example using AliTreeTrending
- Make example plot using AliTreeTrending
- In particular case of the TPC MC/Anchor trending ("LHC15k1a1","passMC","LHC15o","pass3_lowIR_pidfix") outlier detected in DCA
- outlier because of different DCA for B+ and B-

Future usage:
- Jupyter notebook to be used for troubleshooting