

AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

Marlene Turner for the AWAKE Collaboration

To make the lecture a bit more interactive:

We are currently at ?

Do not be afraid of giving a wrong answer...

It just tells me to repeat / explain more carefully.

I can comfortably explain the unique properties of a plasma.

Yes

I have heard about plasma wakefield acceleration.

Yes

I have heard about the AWAKE experiment.

Yes

Outline

• What is the AWAKE experiment, and why is it important?

The physics behind plasma wakefields

The AWAKE experimental setup

Latest AWAKE results

AWAKE:

Advanced Proton Driven Plasma Wakefield Acceleration Experiment

- → Plasma ?
- Proton driven?
- Wakefield acceleration?

Let's discuss the basics:

What is a plasma?

What are plasma wakefields?

Ionised gas

- Quasi-neutrality: the overall charge of a plasma is about zero.
- Collective effects: Charged particles must be close enough together that each particle influences many nearby charged particles.
- Electrostatic interactions dominate over collisions or ordinary gas kinetics.
- Fields created by collective motion of plasma particles are called plasma wakefields.
- In our case : Excited by a proton drive bunch

M. Turner et al.

Why are plasmas interesting for charged particle acceleration?

Why plasma wakefield acceleration?

Conventional Acceleration

Limited to approx. 100 MV/m due to electric breakdowns (ionization).

Why plasma wakefield acceleration?

Conventional Acceleration

Limited to approx. 100 MV/m due to electric breakdowns (ionization).

It's all about the accelerating gradient

E = U/d

Plasma Wakefield Acceleration

Plasma is already ionized or "broken-down" and can sustain electric fields in the order of 100 GV/m.

$$eE_{max}pprox 1 [{
m eV/cm}]\cdot {
m n}^{1/2} [{
m cm}^{-3}]$$

ξ (mm)

Circular vs linear collider

- Big advantage: charged particle passes through the accelerating section many times
- Beam held on a circular trajectory by bending magnets:
 - \Rightarrow Synchrotron radiation $\propto E^4/r^2m^4$

$$m_e = 511 \text{ keV}$$

$$m_p = 936 \text{ MeV}$$

Energy gain per turn = Energy loss per turn

Circular vs linear collider

Linear collider

- Charged particle only passes once through the accelerating section
 - ⇒ almost no synchrotron radiation losses

Linear colliders favorable for acceleration of low mass particles.

⇒ Accelerating gradient and desired energy gives the length of the accelerator

With plasma wakefields we can achieve higher gradients than with conventional accelerators

zB. To accelerate electrons to 1 TeV (10^{12} eV) :

100 MeV/m x 10000 m or 100 GeV/m x 10 m

Let's repeat...

Physicists want a new linear collider. For what?

To accelerate protons.

To accelerate neutrons.

To accelerate electrons.

All of the answers are correct.

What is NOT a property of plasma?

Quasi-Neutrality.

Electrostatic effects dominate.

Collective behavior.

Particle collisions dominate.

What is the advantage of plasma wakefield acceleration?

Low acceleration gradient.

Acceleration of heavier particles.

High acceleration gradient.

Longer acceleration distance.

How to create a plasma wakefield?

Let me give you an analogy...

Let's talk about our boat.. or as we call it:

the drive bunch

Available at CERN:

Proton bunches at CERN carry energies of kJ to MJ!

Relativistic charged particle bunches carry almost purely **transverse electric** fields:

What we need:

Longitudinal electric field to accelerate charged particles.

Our Tool:

- Use plasma to convert the transverse electric field of the proton bunch into a longitudinal electric field in the plasma.
- The more energy is available, the longer (distance-wise) these plasma wakefields can be sustained.

How to create a plasma wakefield?

Important to understand:

- Plasma electron motion is mostly transverse
- Electrons do not move significantly longitudinally
- Rb ions (not shown) heavy and do not move

How to create a plasma wakefield?

Charge separation -> Electric field

Where should we put the electrons to be accelerated?

Plasma wakefields

Decelerating for e

Focusing for e

Defocusing for e

Let's repeat..

To create a plasma wakefield, we DON'T need?

A plasma.

An electron witness bunch.

A proton drive bunch.

We need all of the others.

The accelerating fields of a plasma wake are a result of what?

Magnetic fields.

Electron-ion charge separation.

Plasma ion motion.

Electronelectron charge separation.

Why do plasma wakefields accelerate charged particles?

Longitudinal magnetic field.

Transverse electric field.

Longitudinal electric field.

Transverse magnetic field.

Physics in AWAKE: The seeded proton bunch self-modulation

The seeded proton bunch self-modulation

Requirement:

In order to create plasma wakefields efficiently, the drive bunch length has to be in the order of the **plasma wavelength**.

Problem:

The SPS proton bunches are 12 cm long, and The AWAKE plasma wavelength is 1.2 mm.

Solution:

The experiment relies on the self-modulation instability To micro-bunch the long proton beam into micro-bunches.

The seeded self-modulation

The seeded self-modulation

at z = 0 m (beginning of the plasma)

at z = 10 m (end of the plasma)

transverse proton motion

longitudinal micro-bunch structure of the beam density

The seeded self-modulation

Each micro-bunch drives its own 'low-amplitude' wakefield

Resonant wakefield excitation.

Simulation Result

Let's repeat...

Why do we need the seeded proton bunch self-modulation?

To modulate the plasma.

To modulate the proton bunch density.

It is the transverse wakefields that modulate the proton bunch?

Yes

Experimental realization at CERN -AWAKE-

From a concept and an idea to reality!

Components of a R&D proton driven plasma wakefield accelerator

Plasma:

- Laser
- ☐ Rubidium vapor

Drive Bunch:

☐ Proton beam (400 GeV/c)

Witness Bunch:

■ Electron beam (10-20 MeV)

Diagnostics:

- Proton
- Laser
- Electron

Layout of the experiment

The AWAKE plasma

Downstream Expansion Chamber at 210 [°C] in plasma cell

10 m (straight)

- Rubidium vapour cell.
- The laser ionizes the outermost electron of each rubidium atom.
- Desired plasma density: ~1-10x10¹⁴ electrons/cm³.

The AWAKE Experiment at CERN

Proton bunch momentum: 400 GeV/c

Bunch length: $\sigma_{z} = 12 \text{ cm}$

Radial bunch size at plasma entrance:

$$\Box$$
 $\sigma_r = 0.2 \text{ mm}$

Diagnostics

Interesting information:

- What is the plasma density?
- Did the proton beam self-modulated over the 10 m of plasma?
- What is the energy of the accelerated electrons?

Does the proton bunch self-modulate?

x / mm

x / mm

Does the proton bunch self-modulate?

Foil emits waves up to the plasma wavelength of the foil:

- including radiation in the optical range (OTR).
- Radiation is coherent
 (CTR) for wavelengths
 bigger than the structure of
 the micro-bunches.

2 more diagnostics not covered in this talk.

M. Turner et al.

What is the energy of accelerate electrons?

Typical final energy distribution of the accelerated electron beam after 10 m plasma:

- ☐ Electrons will be injected with an energy around 10-20 MeV.
- Accelerated electrons are sent through a spectrometer magnet and deposit energy on a scintillating screen which is imaged by a camera.

Let's repeat...

To create our plasma, we do NOT need?

Rubidium vapor.

Short ionizing laser pulse.

Electron bunch.

Transverse magnetic fields.

What is NOT a diagnostics installed in AWAKE?

Two-screen measurement.

Streak camera.

Electron energy spectrometer.

Wire scanners.

Latest AWAKE results

The AWAKE experiment (Run 1)

1. Self-modulate a long (compared λ_{pe}) 400 GeV/c proton bunch in plasma.

1. Accelerate externally injected 10- 20 MeV electrons to GeV energies (2018).

Streak camera results

Plasma off:

The two-screen measurement

The AWAKE experimental team

Shortly after we have observed the Seeded-Self Modulation for the first time!

Electron acceleration

Electron acceleration

No electrons accelerated.

Accelerated electrons.

Convert position to energy

Electron Acceleration Results

AWAKE Collaboration, *Nature* volume 561, pages 363–367 (2018)

The AWAKE experimental team

Last May run!

The Future of AWAKE

AWAKE is an R&D experiment to develop a plasma based acceleration technique driven by a proton bunch.

Long term:

AWAKE run 2: use for high-energy physics:

- demonstrate scalability of the AWAKE concept.
- demonstrate to preserve the electron beam quality.
- proton driven electron beam with 50-100 GeV/c.

Summary

- **■ AWAKE** is a **proof-of-principle accelerator R&D experiment** at CERN:
 - ☐ First proton-driven wakefield acceleration experiment worldwide.
 - The experiment opens a pathway towards a plasma-based TeV electron collider.
- Final Goal: Design high quality & high energy electron accelerator based on acquired knowledge.
- AWAKE uses a:
 - 400 GeV SPS proton beam as drive beam
 - ☐ 10-20 MeV electrons as witness beam
 - 4.5 TW laser beam for plasma ionization
 - □ 10 m long rubidium vapor source