
Y. Dieter, J. Eschweiler, T. Hemperek, T. Hirono, J. Janssen, Y. Liu,
D.-L. Pohl

1. Legacy mode: Like current readout, 2 frames hardware trigger veto, send two frames per TLU trigger Same speed,

good for cross checking setup

2. Fast mode: ~ 1 frame hardware trigger veto, send one frame per TLU trigger Double the speed

3. Continuous mode: No trigger veto, sending hits multiple times per trigger or use requested trigger range

feature of EUDAQ2, event building in software one order of magnitude more speed

Bonn milestone
DESY (?)

milestone

EUDAQ 1.x / 2.0
producer

40 %

Documentation

40 %

(Adjustable) TLU
trigger veto

90 %

EUDAQ 1.x / 2.0
Integration

(online monitor
etc.) 0 %

System tests
with particle
beam

40 %

Create start of
frame time

stamps
90 %

TLU to frame
time stamps
correlation

60 %

Enhance of
Mimosa data
interpreter

70 %

Readyness in % Readyness in %

Realtime data
duplication

0 %

EUDAQ 2.0
Integration

0 %

Mimosa26
tuning

0 %

System tests
with particle
beam

40 %

Legend:

EUDAQ 1.x /
2.0 converter

0 %

 Fixing bug / add feature in Python interface for EUDAQ 1.x producer:
https://github.com/eudaq/eudaq/pull/470
https://github.com/eudaq/eudaq/pull/472

 EUDAQ 2.0 producer has much better Python integration (Yi Liu)

 Add python producer to pymosa: https://github.com/SiLab-
Bonn/pymosa/blob/eudaq/pymosa/eudaq.py

 Replay data feature for testing and debugging (tbd)

 Real-time data interpretation for event sending (ongoing)

 Command line interface to ease usage: „pymosa_eudaq”

Example: command line interface

https://github.com/eudaq/eudaq/pull/470
https://github.com/eudaq/eudaq/pull/470
https://github.com/eudaq/eudaq/pull/472
https://github.com/eudaq/eudaq/pull/472
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py

 Since we have to do on the fly data interpretation we would like to send hits
and not raw data

 Shall we encode hits as a „raw data event“ for EUDAQ 1.x?

 Python EUDAQ 1.x interface only supports raw data event sending, is there a
hit data sending in EUDAQ 2.0?

 To be hosted on the github project wiki: https://github.com/SiLab-
Bonn/pymosa/wiki

 To help users to setup pymosa

 Starting to write installation / usage instructions here:
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration

Snippet from wiki page

https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration

 Needed to fake triggered readout as it is done now

 It is faked triggered readout since we still read all Mimosa26 data

 We just send events with trigger; done in software and real-time

 Trigger veto in hardware implemented

 First test: saw expected reduced trigger rate due to veto

 Mechanism: Use trigger acknowledge signal from TLU FSM in FPGA
◦ After accepting one trigger have to set acknowledge (indicate ready for next trigger)

◦ Usually (continuous M26 readout): Set acknowledge immediately after accepting trigger

◦ For legacy/fast mode: wait programmable time until trigger is acknowledged (2 x 115.2 us)

◦ Result: Faked triggered readout with 1 trigger / 2 frames (programmable)

 Needed to be able to use new system with any telescope, when we do not
want to translate the existing config files for all telescope

 Needed to mask noisy pixels that can deplete data bandwidth of continuous
readout main tuning goal is to reduce data rate

 Advantage: recover tuning degradation over time, „best“ possible tuning for
the test beam conditions

 We are not really able to give the threshold setting in multiples of the noise
value (as it is done now?)

 Tuning algorithm to be discussed and tested

 We create a time stamp in the raw data stream with 40 MHz when the new
Mimosa26 frame readout starts

 Using the Marker (MKD) signal of Mimosa26
◦ Four clock cycles high if new frame readout starts

 We create a time stamp in the raw data stream with 40 MHz when the new
Mimosa26 frame readout starts

 We create a time stamp in the raw data stream with 40 MHz when we have a
TLU trigger word

 This allows us to assign with 115 us window a (or multiple) trigger to a
Mimosa26 Row

 Proof of principle with test beam data at ELSA already done

 Make code readable

 Add unit tests for code quality

 Add code documentation

 Ongoing (Jens & Yannick)

 Test speed for real-time data interpretation

 Since EUDAQ test beam data analysis is event based we can duplicate hits for
overlapping events

 Needs a good time reference and offline data correlation in software to this
reference

 Software work needed here

