
Y. Dieter, J. Eschweiler, T. Hemperek, T. Hirono, J. Janssen, Y. Liu,
D.-L. Pohl

1. Legacy mode: Like current readout, 2 frames hardware trigger veto, send two frames per TLU trigger  Same speed,

good for cross checking setup

2. Fast mode: ~ 1 frame hardware trigger veto, send one frame per TLU trigger  Double the speed

3. Continuous mode: No trigger veto, sending hits multiple times per trigger or use requested trigger range

feature of EUDAQ2, event building in software  one order of magnitude more speed

Bonn milestone
DESY (?)

milestone

EUDAQ 1.x / 2.0
producer

40 %

Documentation

40 %

(Adjustable) TLU
trigger veto

90 %

EUDAQ 1.x / 2.0
Integration

(online monitor
etc.) 0 %

System tests
with particle
beam

40 %

Create start of
frame time

stamps
90 %

TLU to frame
time stamps
correlation

60 %

Enhance of
Mimosa data
interpreter

70 %

Readyness in % Readyness in %

Realtime data
duplication

0 %

EUDAQ 2.0
Integration

0 %

Mimosa26
tuning

0 %

System tests
with particle
beam

40 %

Legend:

EUDAQ 1.x /
2.0 converter

0 %

 Fixing bug / add feature in Python interface for EUDAQ 1.x producer:
https://github.com/eudaq/eudaq/pull/470
https://github.com/eudaq/eudaq/pull/472

 EUDAQ 2.0 producer has much better Python integration (Yi Liu)

 Add python producer to pymosa: https://github.com/SiLab-
Bonn/pymosa/blob/eudaq/pymosa/eudaq.py

 Replay data feature for testing and debugging (tbd)

 Real-time data interpretation for event sending (ongoing)

 Command line interface to ease usage: „pymosa_eudaq”

Example: command line interface

https://github.com/eudaq/eudaq/pull/470
https://github.com/eudaq/eudaq/pull/470
https://github.com/eudaq/eudaq/pull/472
https://github.com/eudaq/eudaq/pull/472
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py
https://github.com/SiLab-Bonn/pymosa/blob/eudaq/pymosa/eudaq.py

 Since we have to do on the fly data interpretation we would like to send hits
and not raw data

 Shall we encode hits as a „raw data event“ for EUDAQ 1.x?

 Python EUDAQ 1.x interface only supports raw data event sending, is there a
hit data sending in EUDAQ 2.0?

 To be hosted on the github project wiki: https://github.com/SiLab-
Bonn/pymosa/wiki

 To help users to setup pymosa

 Starting to write installation / usage instructions here:
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration

Snippet from wiki page

https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration
https://github.com/SiLab-Bonn/pymosa/wiki/Eudaq-integration

 Needed to fake triggered readout as it is done now

 It is faked triggered readout since we still read all Mimosa26 data

 We just send events with trigger; done in software and real-time

 Trigger veto in hardware implemented

 First test: saw expected reduced trigger rate due to veto

 Mechanism: Use trigger acknowledge signal from TLU FSM in FPGA
◦ After accepting one trigger have to set acknowledge (indicate ready for next trigger)

◦ Usually (continuous M26 readout): Set acknowledge immediately after accepting trigger

◦ For legacy/fast mode: wait programmable time until trigger is acknowledged (2 x 115.2 us)

◦ Result: Faked triggered readout with 1 trigger / 2 frames (programmable)

 Needed to be able to use new system with any telescope, when we do not
want to translate the existing config files for all telescope

 Needed to mask noisy pixels that can deplete data bandwidth of continuous
readout  main tuning goal is to reduce data rate

 Advantage: recover tuning degradation over time, „best“ possible tuning for
the test beam conditions

 We are not really able to give the threshold setting in multiples of the noise
value (as it is done now?)

 Tuning algorithm to be discussed and tested

 We create a time stamp in the raw data stream with 40 MHz when the new
Mimosa26 frame readout starts

 Using the Marker (MKD) signal of Mimosa26
◦ Four clock cycles high if new frame readout starts

 We create a time stamp in the raw data stream with 40 MHz when the new
Mimosa26 frame readout starts

 We create a time stamp in the raw data stream with 40 MHz when we have a
TLU trigger word

 This allows us to assign with 115 us window a (or multiple) trigger to a
Mimosa26 Row

 Proof of principle with test beam data at ELSA already done

 Make code readable

 Add unit tests for code quality

 Add code documentation

 Ongoing (Jens & Yannick)

 Test speed for real-time data interpretation

 Since EUDAQ test beam data analysis is event based we can duplicate hits for
overlapping events

 Needs a good time reference and offline data correlation in software to this
reference

 Software work needed here

