Ultra-low Emittance Coupling, method and results from the Australian Synchrotron **Light Source**

Rohan Dowd

Accelerator Physicist Australian Synchrotron

Australian Synchrotron

Overview

- Lattice and diagnostics overview
- Alignment and orbit correction
- Linear Optics from Closed Orbits (LOCO)
- Vertical Emittance Minimisation
- Measurements
- Conclusions

Lattice overview

- Double bend achromat
- •14 Unit cells
- Combined function dipoles
- Corrector and skew quad coils on sextupoles.
- Horizontal emittance varied with dispersion.

Storage Ring Parameters

Energy 3 GeV

Circumference 216 m

RF Frequency 499.654 MHz

Peak RF Voltage 3.0 MV

Current 200 mA

Betatron Tune (h/v) 13.3/5.2

Momentum Compaction 0.002

 ε_{x} (nominal) 10.4 nm·rad

Beam Diagnostics

- 2 diagnostic beamlines: X-ray and optical
- •X-ray pinhole used for emittance measurements, but has inherent resolution limit at ~ 10 pm veritcal emittance
- Interferometer developed on Optical Beamline but small frontend vertical aperture has hindered measurements.

X-ray Diagnostic Beamline

Optical Diagnostic Beamline

Alignment

- Alignment error:
 26 µm Quadrupoles,
 18 µm Dipoles
- Intrinsic Fiducial and assembly error:
 16 µm (Quad)
 6 µm (Dipole)
- Full ring realignment conducted every year.
- Current 'natural' emittance coupling = 0.059%

BPM resolution and Beam Based Alignment

- Libera BPM electronics
- BPM resolution ~0.1 um (rms)
- Resolution of BBA is ~10 um.
- BPM mechanical alignment resolution <20 um

Orbit correction

RMS orbit deviation typically: <20 µm Horizontal, <10 Vertical

LOCO

- LOCO Linear Optics from Closed Orbits.
- Adjusts the linear optics in the model to fit the real machine data
- Model response matrix Machine response matrix = Error
- Minimise error by adjusting the model 'fit parameters'
- Fit Parameters normally include:
 - BPM/Corrector gains and coupling
 - Corrector gains and coupling
 - Quadrupole strengths
 - Skew Quadrupole strengths

LOCO - Inputs

LOCO - Outputs

- BPM Gains
- BPM couplings
- Skew components
- Quad Strengths
- Corrector gains/tilts
- Full Calibrated model

Realitiy Check – girder rolls

- Fitted skew components show a consistent spike in Sector 1, girder 3.
- Alignment metrology data does not show a significant roll
- Manual measurements using a spirit level confirm the girder does has a large roll

Emittance Coupling minimisation

- Emittance coupling calculated from LOCO Calibrated model (using beam envelope calculation from particle tracking).
- Minimisation algorithm used to adjust skew quads to desired emittance coupling.
- Emittance coupling can be adjusted to arbitrary amounts

Set Coupling	LOCO Measured Coupling	Calculated ε _y (pm)
0.0%	0.009%	0.9
0.1%	0.12%	12.2
0.2%	0.23%	23.5
0.3%	0.33%	33.7
0.4%	0.43%	43.9
0.5%	0.54%	55.1
0.6%	0.64%	65.3
0.7%	0.74%	75.5
0.8%	0.84%	85.7
0.9%	0.92%	93.8
1.0%	1.04%	106.1

Reality Check – Dispersion Minimisation

- Same method used to minimise vertical dispersion only
- Clear reduction found in dispersion, but linear coupling increases.

 Vertical dispersion reduced from 3.4mm to 0.9mm (rms)

Tousheck Lifetime

- Tousheck lifetime depends on bunch volume and hence ε_ν
- Lifetime measured in 8 mA single bunch Tousheck dominated
- Should show dependence on coupling^{1/2}

LOCO Measured Coupling	Measured lifetime (h)
0.009%	1.49 ± 0.06
0.12%	3.15 ± 0.25
0.23%	4.13 ± 0.25
0.33%	5.58 ± 0.44
0.43%	6.35 ± 0.40
0.54%	6.76 ± 0.42
0.64%	7.29 ± 0.49
0.74%	8.14 ± 0.74
0.84%	8.55 ± 0.60
0.92%	9.01 ± 0.39
1.04%	9.16 ± 0.50

Tousheck Lifetime vs RF

 By taking single bunch lifetime over extended period the Tousheck component of the lifetime can be extracted.

$$\frac{1}{\tau} = \frac{Nr_{e}^{2}c}{8\pi\sigma_{z}\gamma^{2}} \left\langle \frac{D(\varepsilon)}{\delta_{\max}^{3}\sigma_{x}\sigma_{y}} \right\rangle, \varepsilon = \left(\frac{\delta_{\max}\beta_{x}}{\gamma\sigma_{x}}\right),$$

$$D(\varepsilon) = \sqrt{\varepsilon} \left(-\frac{3}{2}e^{-\varepsilon} + \frac{\varepsilon}{2}\int_{\varepsilon}^{\infty} \frac{e^{-u}\ln(u)}{u}du + \frac{1}{2}(3\varepsilon - \varepsilon\ln(\varepsilon) + 2)\int_{\varepsilon}^{\infty} \frac{e^{-u}}{u}du\right)$$

$$\frac{di}{dt} = -\frac{i}{a} - \frac{i^2}{b}$$

$$i(t) = \frac{i_0 b e^{-\frac{1}{a}}}{b + i_0 a (1 - e^{-\frac{1}{a}})}$$

Tousheck Lifetime vs RF

Tousheck component will also change with RF voltage.

- Measurements taken at 3 settings – Minimum, natural and 0.1% emittance coupling.
- 2.1% energy acceptance (measured)
- Curve fit by varying $\varepsilon_y/\varepsilon_x$, other values fixed.
- Blue curve fit corresponds to $\varepsilon_v = 1.24 \text{ pm}$

Tune Crossing

- Separation of Horizontal and Vertical tunes when brought to difference resonance will indicate the level of linear coupling.
- Table shows tunes at minimal sparation for different coupling settings and the corresponding coupling

Setting	Vx	Vy	Coupling
Min (0.01%)	.2506	.2505	<0.0045%
Natural (0.06%)	.2498	.2508	0.018%
0.1%	.2484	.2512	0.063%
0.2%	.2483	.2512	0.142%
0.3%	.2487	.2514	0.124%
0.4%	.2480	.2515	0.204%
1.0%	.2469	.2527	0.528%

Conclusions

- Naturally low coupling achieved by good mechanical and beam based alignment.
- LOCO is an effective tool for lattice measurements and manipulations
- Large number of skew quads allows for good control of coupling
- Tousheck Lifetime Analysis indicate ε_ν ~ 1-2 pm
- Direct measurements (interferometer) would be nice.

Australian Synchrotron www.synchrotron.org.au

Additional Slides

Beam tilt analysis.

Comparison of model predictions (black) vs measurements (blue) of beam tilt angle at X-ray diagnostic beamline

Optical interferometer

