

ORBIT CONTROL WITH LIBERAS

Nicolas HUBERT Synchrotron SOLEIL On behalf of Diagnostics group

- Libera modules
 - Overview
 - Data Flow
 - Principles
 - Performances
- Orbit Control
 - Fast Orbit Feedback
 - Interaction with Slow Orbit Feedback
- Experience with Libera
 - ReliabilityLibera users community

January 14, 2010

- Electronic modules for Beam Position Monitor
- Industrial device
 - Specified by SOLEIL for light sources
 - Detailed design and construction by Instrumentation Technologies (Solkan, Slovenia)
- Machine equipped with Libera:
 - New machines:
 - SOLEIL
 - DIAMOND
 - Australian Synchrotron
 - ALBA
 - NSRRC
 - SSRF
 - PETRA III
- Product evolves with the new customers:
 - Libera Electron became Libera Brilliance (new RF board)

Upgrades:

ELETTRA

ESRF

Overview

• Inside:

•	4	•	AD BIT

Analog Board (4 multiplexed channels) Digital Board (Xilinx V2P FPGA)

Single Board Computer (SBC):

- ARM processor
- Linux
- Some data processing and interface with Control Command

Libera principles: switching

- Takes advantages of the 2 following systems:
 - 4 channels
 - High sampling rate, Bandwidth
 - High Resolution
 - Multiplex channel
 - Temperature dependence
 - · Beam current and filling pattern dependence
- Need for a switching mechanism
 - Rotation frequency \approx 13 kHz
 - 8 positions (out of 16 possible)

Switch position	Input					
	A	B	C	D		
	Analog Channel Output					
0	D]c	B	A		
1	D	B	C	A		
2	A	C	В	D		
3	A	B	C	D		
4	D	C	A	B		
5	D	B	A	C		
6	A	C	D	B		
7	A	8	D	C		
8	C	D	B	A		
9	8	D	C	A		
10	C	A	B	D		
11	8	A	C	D		
12	C	D	A	B		
13	8	D	A	C		
14	C	A	D	B		
15	8	A	D	C		

• **Digital Signal Conditioning** to minimize side effects of switching mechanism:

Libera Data Flow

Libera Data Flow: Turn By Turn

- Characteristics:
 - Sampling rate at revolution frequency:
 - 846 kHz for SOLEIL storage ring
 - Buffer of data on demand
 - Recorded automatically or on trigger
 - Va, Vb, Vc, Vd, X, Y, Q and Σ

First Turn

- Applications:
 - Commissioning: first turns
 - Monitoring of booster and transfer lines
 - Machine Physics studies
 - Tune measurements

Tune measurement

Libera Data Flow: Fast Acquisition

- Continuous data flow at 10 kHz with a bandwidth of ~2 kHz
- Distributed on fast communication dedicated ports
- Purpose:
 - Fast Orbit Feedback System
 - Monitoring of beam position spectra
 - Internal position Interlock feature

Typical noise spectrum BPM + Beam $0 \rightarrow 350 \text{ Hz}$

January 14, 2010

N. Hubert

Libera Data Flow: Slow Acquisition

- Continuous data flow at 10 Hz
- Purpose:
 - Monitoring the stored beam
 - Data for Slow Orbit Feedback

January 14, 2010

N. Hubert

SOLEIL ORBIT CONTROL

Manual Orbit Correction

✓H-plane

V-plane

Position Interlock system embedded in Libera modules

- Interlock output is triggered if:
 - · position measurement outside preconfigured thresholds
 - any ADC saturates (wrong measure of the position in this case)
- Gain dependant: interlock is inhibited at low current

Post-Mortem

– A buffer of Turn by Turn Post-mortem data is frozen on user's demand (beam losses)

N. Hubert

Libera Electron Performances: Resolution

RF gen		RMS Noise (µm)			
	Data type (sampling rate)	X	Z		
	Turn by Turn (Revolution frequency: 846 kHz)	2	3		
	Slow Acquisition (10 Hz)	0.02	0.05		

January 14, 2010

N. Hubert

Libera Electron Performances: Beam current dependence

- Automatic Gain Control:
 - Front-end attenuators values are automatically adjusted to input level
 - Steps <1 µm at each change of attenuators value

- Correction tables are available to compensate BCD
- Improved (announced <1 μ m) with 'brilliance' version of Liberas

Libera Electron Performances: Crosstalk

- Crosstalk:
 - Due to non perfect isolation between the 4 channels, movements in one plane affect the position measurements in the other plane.
 - Crosstalk H->V has been measured on 145 modules.

- Has been improved with 'Brilliance' version of Liberas (-45 dBm instead of -30 dBm for 'Electron' version)

Libera Electron Performances: Turn by Turn

- Digital filtering for TbT data introduces:
 - Smearing between turns
 - Frequency dependant amplitude attenuation
 - → Problematic for Machine Physic studies (FMA,...)
- 2 Solutions are investigated:
 - New filtering
 - Moving average filter (MAF)
 - Filter configuration depend on the filling pattern
 - Not satisfying at the moment (poor resolution for short pulses)
 - Offline data processing
 - Deconvolution of standard TbT data
 - Most promising solution

Orbit Control with Libera BPMs, LER 10

Libera and Orbit Feedbacks

FOFB Architecture

- FOFB algorithm is embedded in the LIBERA FPGA code
 - Matrix multiplication split and distributed
 - One Libera process only one line of the inverse response matrix
 - 48 Libera (out of 120) are calculating correction data for FOFB
 - New correction set points are sent to fast power-supplies at 10 kHz

Libera and Orbit Feedbacks

- SOFB and FOFB are running together without frequency deadband (down to DC)
 - Interaction between slow and fast systems
 - SOFB cancels DC part of the Fast Correctors
 - SOFB calculates a new reference for FOFB by predicting movement caused by its next correction. This new reference orbit is continuously updated on all Liberas.
 - Benefits of both systems efficiency
 - Suppression of perturbations at high frequencies but also caused by insertion devices with FOFB
 - Long term stabilization with SOFB

Libera and Orbit Feedbacks

Vertical position stability at source points

FOFB efficiency

SOLEIL cumulated PSD in a straight

9 hours

Libera reliability

- 161 modules at Soleil in operation since 2006 (120 on the storage ring)
 - Systems rebooted twice a year
 - 1 or 2 system crashes per year
- Failures history over 4 years of daily operation:

Libera Users Community

- Libera are based on programmable ships
 - Functionalities can be improved with software/firmware upgrades.
 - Based on users demands, Instrumentation Technologies produces 1 upgrade per year.
- Users community
 - For all Libera users
 - Meets once a year (May/June)
 - Discuss Libera issues
 - Present new developments
 - Have a practical session on a 'real machine'
 - Elaborate a 'wish list' for the next software release

• Don't hesitate to join this meeting if you are interested in using Liberas

THANK YOU FOR YOUR ATTENTION !

January 14, 2010

N. Hubert