

Areas of Collaboration for Low Emittance Technologies

T. Lefevre, M. Palmer, E. Wallen January 15, 2010

- Potential or existing areas for collaboration between groups:
 - Pulsed magnets and kickers
 - Low impedance strip-line kickers
 - Broadband requirements, high voltage reliability
 - Ongoing collaboration: DA⊕NE, Damping Rings groups
 - Fast rise- and fall-time high voltage pulsers with good amplitude stability and high reliability
 - Ongoing collaboration: DA⊕NE, Damping Rings groups
 - Methods to minimize kicker-induced orbit errors
 - Pulsed magnet design for on-axis injection schemes

Magnet Designs

- High Field Wigglers and Undulators
 - Aperture, peak field, field quality and shimming, and non-linear optimization for widely varying applications
 - SC wire choices, properties, and methods for SC designs
 - Connection with vacuum chamber design: photon absorbers, electron cloud build-up, cold-mass heat loads, protection against losses, radiation damage
- Conventional magnet approaches for low emittance cell design, particularly when "high occupancy" cells are required

- Alignment
 - Precision alignment and magnet fiducialization
 - Vibrating wire technique (with detailed study/suppression of systematic effects) provides alignment capability which is wellmatched to low emittance ring requirements.
 - Beam-based alignment techniques
 - Real-time alignment technologies
 - Girder alignment/movers ⇒ magnet movers ⇒ correctors
- Instrumentation
 - BPM Systems
 - Turn-by-turn capabilities and correction methods
 - Orbit feedbacks and maximum attainable bandwidths
 - Calibration and stability/repeatability issues
 - Synchrotron Radiation Monitors for Emittance Characterization and Tuning

- Feedback Systems
 - Impact of digitization resolution on low emittance operation
 - Specifications for control of instabilities in high intensity, low emittance rings
- RF Systems
 - Low Level RF Design
 - RF Power solid state amplifiers vs klystrons
 - Cavity design for various bunch structure requirements