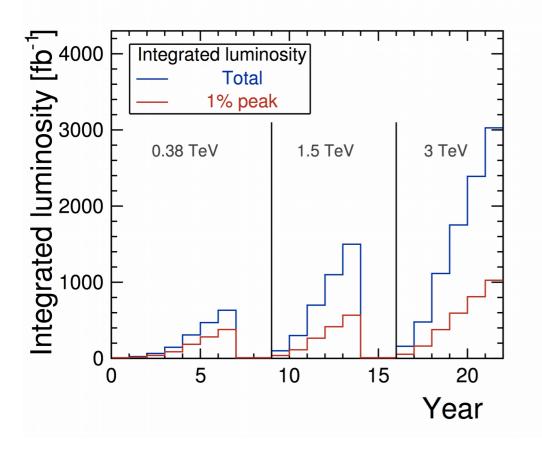

Proposed updated CLIC staging baseline and physics implications

Philipp Roloff (CERN)

CLICdp general meeting



26/07/2018 CERN, Geneva

Reminder: published baseline scenario

• Initial stage at 380 GeV optimised for Higgs and top measurements (including tt threshold scan)

• Baseline scenario of 22 years with three energy stages presented in CERN-2016-004

Stage	\sqrt{s} (GeV)	\mathscr{L}_{int} (fb ⁻¹)
1	380	500
1	350	100
2	1500	1500
3	3000	3000

Motivations for an update

1.) Physics:

- $\sigma(ZH)$ using recoil method only possible at the first stage \rightarrow limited by relatively short first stage (only 3 years with nominal luminosity)
- Several flagship measurements at high energy, e.g. double Higgs, limited by statistics

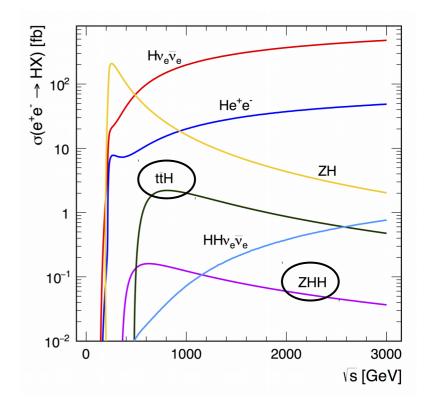
2.) More consistency with other options:

- Run time per year: 1.08 x 10⁷ s (CLIC), 1.2 x 10⁷ s (FCC-ee), 1.6 x 10⁷ s (ILC)
- Very different ramp-up scenarios (CLIC most conservative)

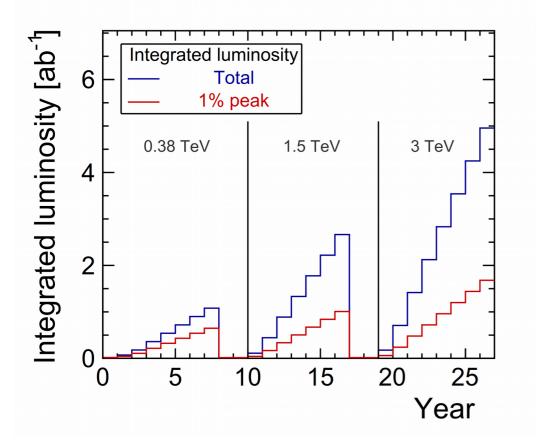
Other considerations

1.) CLIC Stage at 550 GeV for $t\bar{t}H$ and ZHH?

- $\Delta g_{\text{ttH}}/g_{\text{ttH}} \approx 3\%$ using L = 4 ab⁻¹ (ILC study)
- $\Delta\lambda/\lambda \approx 25\%$ using L = 4 ab⁻¹ (ILC study scaled)


HL-LHC: $\Delta g_{ttH}/g_{ttH} = 8.5\%$, $\Delta \lambda/\lambda \approx 50\%$

 \rightarrow Only attractive if we can get to O(5) ab⁻¹


arXiv:1506.05992, ATLAS-PHYS-PUB-2014-016

2.) Two instead of three stages?

- Very interesting to study impact, e.g. in in global EFT fits
- However, each stage provides unique physics opportunities
- \rightarrow important not to limit new ideas too much by the baseline strategy

Proposed updated staging baseline

Based on discussions with Lucie Linssen, Aidan Robson, Frank Simon, Daniel Schulte and Steinar Stapnes.

• The energies of the three stages are unchanged

• Ramp up first stage: 10% / 30% / 60% ramp up 2nd and 3rd stage: 25% / 75% (identical to ILC)

Following presentation by Frédérick Bordry in the SPC:
1 year = 1.2 x 10⁷ seconds (75% of 185 days)

• Full program of 27 years provides:

1 ab⁻¹ at 380 GeV (*incl. tt̄ threshold scan*) + 2.5 ab⁻¹ at 1.5 TeV + 5 ab⁻¹ at 3 TeV

Impact on the physics potential (mostly Higgs)

Philipp Roloff

CLIC Higgs coupling sensitivity

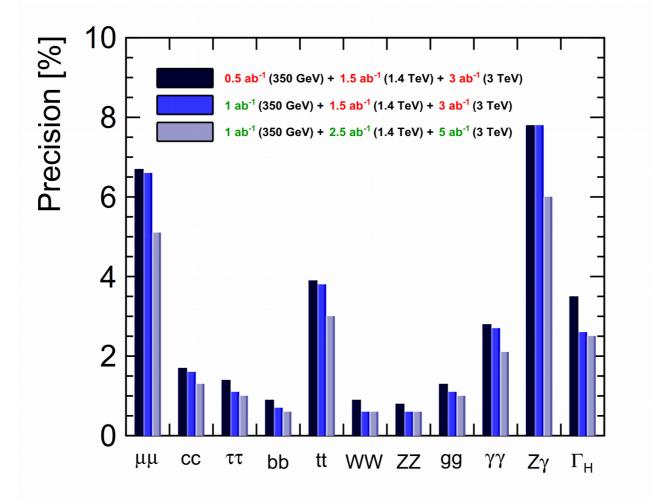
		St	atistical prec	ision		
Channel	Macquramont	Observable	350GeV		Reference	
Channel	Measurement	Observable	1 ab^{-1}			
711	Recoil mass distribution		78 MeV			
ZH ZH	$\sigma(ZH) \times BR(H \rightarrow invisible)$	$m_{ m H} \Gamma_{ m inv}$	78 Me v 0.4 %		[1] [1]	
	· · · · · ·					
ZH	$\sigma(\mathbf{ZH}) \times BR(\mathbf{Z} \to \mathbf{l}^+\mathbf{l}^-)$	$g_{\rm HZZ}^2$	2.7%		[1]	
ZH	$\sigma(\mathbf{Z}\mathbf{H}) \times BR(\mathbf{Z} \to \mathbf{q}\overline{\mathbf{q}})$	g _{HZZ} ²	1.3%		[1]	
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HZZ}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$	0.61%	[1]		
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g_{ m HZZ}^2 g_{ m Hcc}^2 / \Gamma_{ m H}$	10%	[1]		
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{gg})$		4.3%		[1]	
ZH	$\sigma(\mathrm{ZH}) imes BR(\mathrm{H} ightarrow au^+ au^-)$	$g_{ m HZZ}^2 g_{ m H au au}^2/\Gamma_{ m H}$	4.4%		[1]	
ZH	$\sigma(\mathrm{ZH}) \times BR(\mathrm{H} \to \mathrm{WW}^*)$	$g_{\rm HZZ}^2 g_{\rm HWW}^2 / \Gamma_{\rm H}$	3.6%		[1]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HWW}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	1.3%		[1]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}}) \qquad g_{\mathrm{HWW}}^2 g_{\mathrm{Hcc}}^2 / \Gamma_{\mathrm{H}}$		18%		[1]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		7.2%		[1]	
			Statistical	precision		
Channel	Measurement	Observable	1.4 TeV	3 TeV	Reference	
Channel	Wieusurement		2.5ab^{-1}	5.0ab^{-1}	Reference	
$Hv_e\overline{v}_e$	$H \rightarrow b\overline{b}$ mass distribution	m _H	36MeV	28 MeV	[1]	
ZH			$2.6\%^{\dagger}$	$4.3\%^{\dagger}$		
	$\sigma(\mathbf{ZH}) \times BR(\mathbf{H} \to \mathbf{b}\overline{\mathbf{b}})$	$g_{\mathrm{HZZ}}^2 g_{\mathrm{Hbb}}^2 / \Gamma_{\mathrm{H}}$	0.3%		[2]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{\rm HWW}^2 g_{\rm Hbb}^2 / \Gamma_{\rm H}$		0.2%	[1]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$	4.7%	4.4%	[1]	
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$	2 2 1	3.9%	2.7%	[1]	
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \tau^{+}\tau^{-})$		3.3%	2.8%	[1]	
$Hv_e\overline{v}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-}$) $g_{\rm HWW}^2 g_{\rm H\mu\mu}^2 / \Gamma_{\rm H}$	29%	16%	[1]	
$Hv_e\overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \gamma\gamma)$		12%	6 <i>%</i> *	[1]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{H}\nu_{\mathrm{e}}\overline{\nu}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		33%	19%*	[1]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*}$	/	0.8%	$0.4\%^*$	[1]	
$H\nu_e\overline{\nu}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g_{\rm HWW}^2 g_{\rm HZZ}^2 / \Gamma_{\rm H}$	4.3%	$2.5\%^*$	[1]	
He^+e^-	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ}g^2_{ m Hbb}/\Gamma_{ m H}$	1.4%	$1.5\%^{*}$	[1]	
tīH	$\sigma(t\bar{t}H) \times BR(H \to b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	5.7%	_	[3]	
$HHv_e\overline{v}_e$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	42%	18%	[1]	
$HH\nu_e\overline{\nu}_e$	with $-80\% e^-$ polarisation	λ	31%	14%	[1]	

 $\begin{array}{l} \sigma(ZH) \sim g^{2}_{HZZ} \\ \sigma(ZH) \times BR(H \rightarrow VV/ff) \sim g^{2}_{HZZ} g^{2}_{HVV/Hff} / \Gamma_{H} \\ \sigma(Hv_{e} v_{e}) \times BR(H \rightarrow VV/ff) \sim g^{2}_{HWW} g^{2}_{HVV/Hff} / \Gamma_{H} \end{array}$

• No assumptions on additional Higgs decays (requires lepton collider)

• Correlations of the measurements included where relevant

• All results limited by $\sigma(HZ)$ measurement


*: extrapolated from 1.4 to 3 TeV †: fast simulation

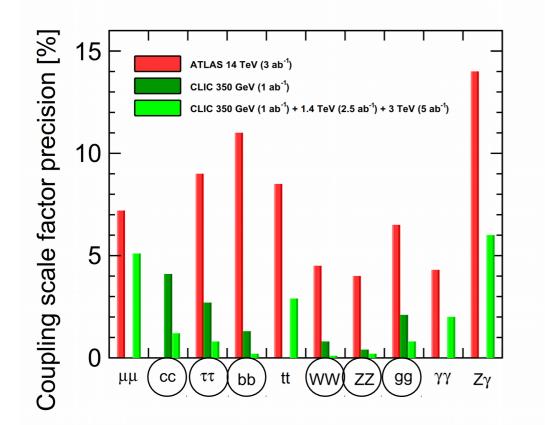
[1] Eur. Phys. J. C 77, 475 (2017)
[2] JHEP 05, 096 (2017)
[3] arXiv:1807.02441 (2018)

26/07/2018

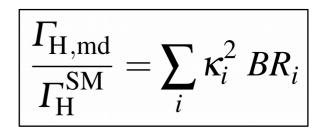
Philipp Roloff

Impact of the updated luminosities

• More luminosity at the first stage also increases the sensitivity of the full program $(g_{HZZ}, g_{HWW}, g_{Hbb}, \Gamma_{H}, ...)$


• Couplings from rare decays and g_{HH} benefit from more luminosity at high energies

Comparison to HL-LHC


Model dependent fit:

$$\kappa_i^2 = \Gamma_i / \Gamma_i^{\mathrm{SM}}$$

BR: SM branching fractions (prediction)

Only SM Higgs decays:

• Already the first CLIC stage significantly better than HL-LHC for several couplings

• The full program enhances the precision further

 μμ, γγ and Zγ would benefit from HL-LHC + CLIC combination

ATLAS-PHYS-PUB-2014-016

Impact of beam polarisation

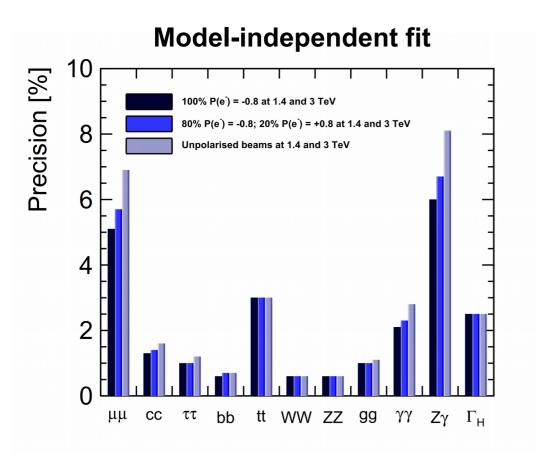
Assumptions on beam polarisation in physics studies have been inconsistent in the past!

• **Higgsstrahlung at first stage:** precision almost independent of electron beam polarisation

• $e^+e^- \rightarrow Hv_v v_e^-$ and $e^+e^- \rightarrow HHv_v v_e^-$: cross section scales by 1.8 (0.2) for -80% (+80%) electron beam polarisation \rightarrow The Higgs program prefers the -80% configuration at high energy (equivalent to reduction of run time due)

• The BSM sensitivity of two fermion production: benefits from some fraction with +80%, examples:

1.) $e^+e^- \rightarrow t\bar{t}$ (less than 50% with +80% acceptable)


2.) **Z' from e^+e^- \rightarrow \mu^+\mu^-** (systematics limited already with 1 ab⁻¹)

 \rightarrow Also at high energy some faction of data with +80% is desired

• If new physics is discovered: polarisation might be useful to constrain the underlying theory

Eur. Phys. J. C 77, 475 (2017) arXiv:1807.02441 (2018) arXiv:1208.1148 (2012)

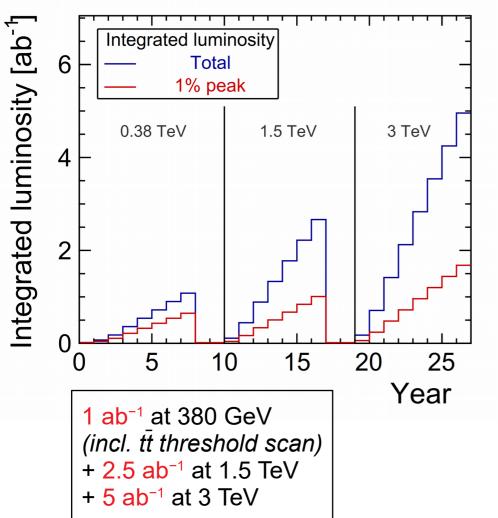
Impact of polarisation at the 2nd and 3rd stage


Fraction P(e⁻) = -0.8	Δλ/λ
unpolarised	16.5%
70%	14.4%
80%	13.7%
100%	12.3%

2.5 ab⁻¹ at 1.5 TeV + 5 ab⁻¹ at 3 TeV

Collecting 80% (70%) of the luminosity with -80% electron beam polarisation at high energy corresponds to 48% (32%) more run time for double Higgs production and rare decays

NB: <10% precision on λ expected from differential distributions (same dependence on the polarisation)

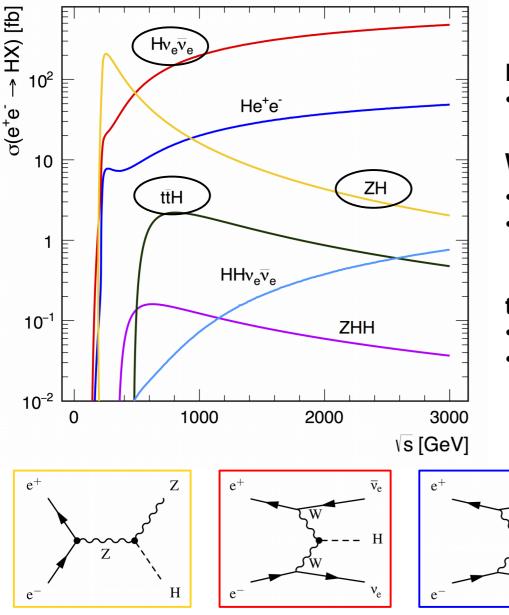

EFT analysis of Higgs projections

Philipp Roloff

For discussion (instead of a summary)

Proposed updated CLIC staging baseline:

Splitting of beam polarisation configurations to maximise the overall physics potential:


• 380 GeV: equal luminosity with +80% and -80%

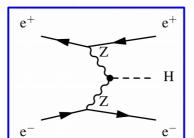
• **1.5 and 3 TeV:** 80% (70%?) of the luminosity with -80% polarisation

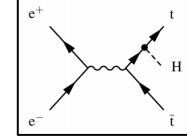
Backup slides

Philipp Roloff

Reminder: single Higgs production

Higgsstrahlung: $e^+e^- \rightarrow ZH$


• $\sigma \sim 1/s$, dominant up to $\approx 500 \text{ GeV}$


WW fusion: $e^+e^- \rightarrow Hv_vv_a$

- $\sigma \sim \log(s)$, dominant above 500 GeV
- Large statistics at high energy

tt H production: $e^+e^- \rightarrow t\bar{t}H$

- Accessible \geq 500 GeV, maximum \approx 800 GeV
- Direct extraction of the top-Yukawa coupling



26/07/2018

Philipp Roloff

Reminder: double Higgs production

$e^+e^- \rightarrow ZHH$:

• Cross section maximum $\approx 600 \text{ GeV}$, but very small number of events ($\sigma \le 0.2 \text{ fb}$)

 $e^+e^- \rightarrow HHv_e^-\overline{v}_e^-$:

 \overline{v}_{e}

Η

Η

Benefits from high-energy operation

• Also allows to extract the quartic WWHH coupling

The deviations of the Higgs self-coupling from its SM expectation might be sizeable:

Model	$\Delta g_{hhh}/g_{hhh}^{SM}$
Mixed-in Singlet	-18%
Composite Higgs	tens of $\%$
Minimal Supersymmetry	$-2\%^{a}$ $-15\%^{b}$
NMSSM	-25~%

26/07/2018

Philipp Roloff