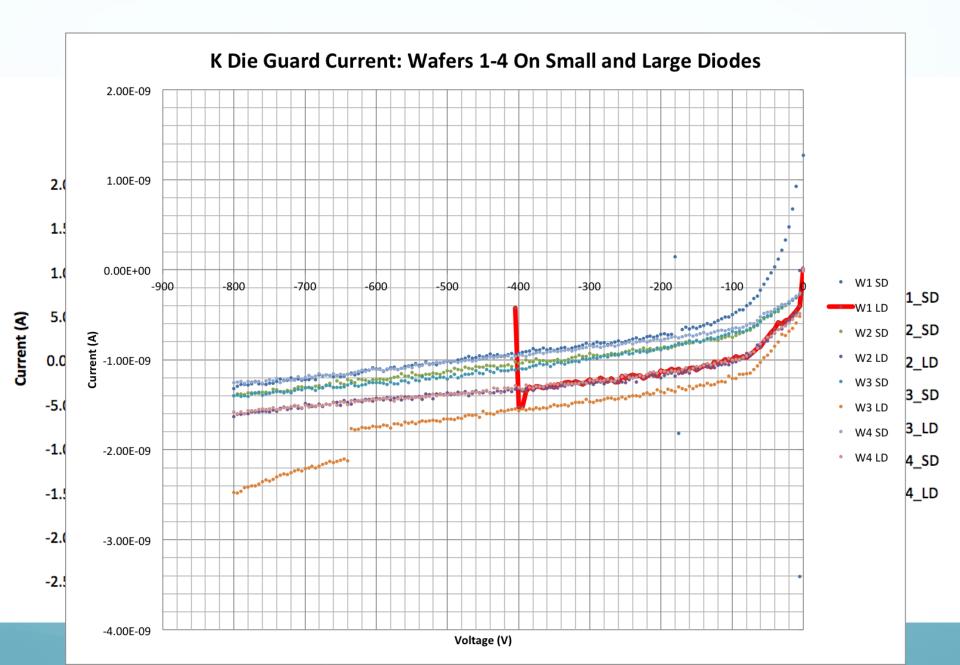

Nhanced Semiconductor Pre-Irradiation Wafer Testing For HL-LHC Upgrade

Josh Everts

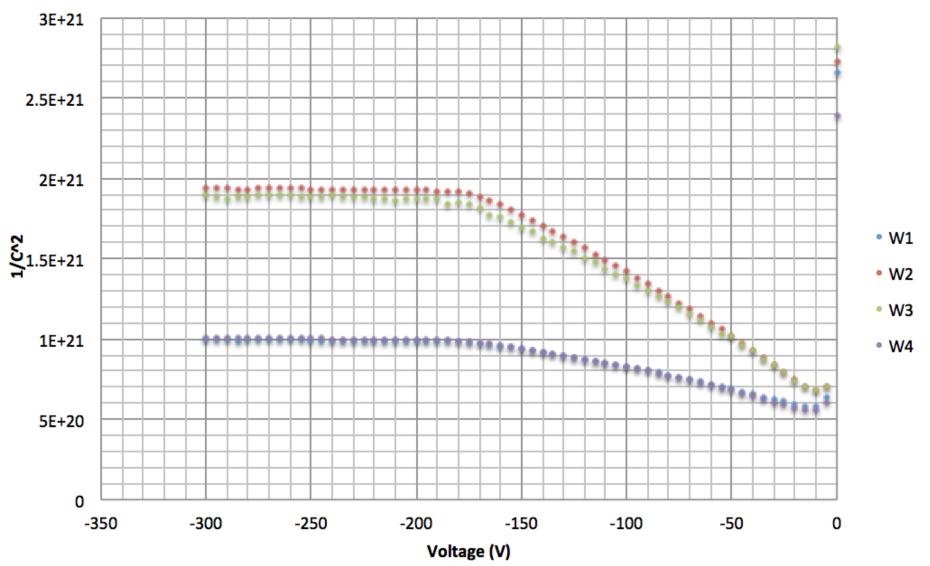
# **Underlying Principles**

- Particles pass through the detector and collide with atoms in the silicon
- This collision 'knocks out' electrons from atoms
- These electrons traverse an electric field created by an applied potential (bias potential) inside the silicon wafer
- Finally, the electrons travel to outside circuitry, through amplifiers and shapers, to generate a signal for analysis



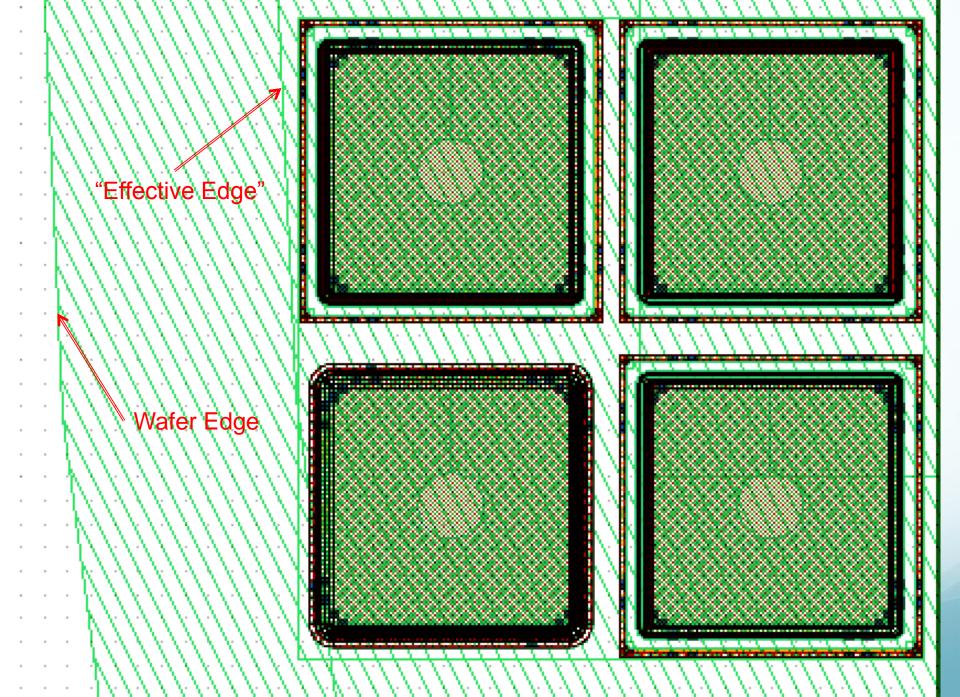

Aluminum Back Contact V < -170 V

### Nhanced Semiconductor Manufacturing Process and Production Goals

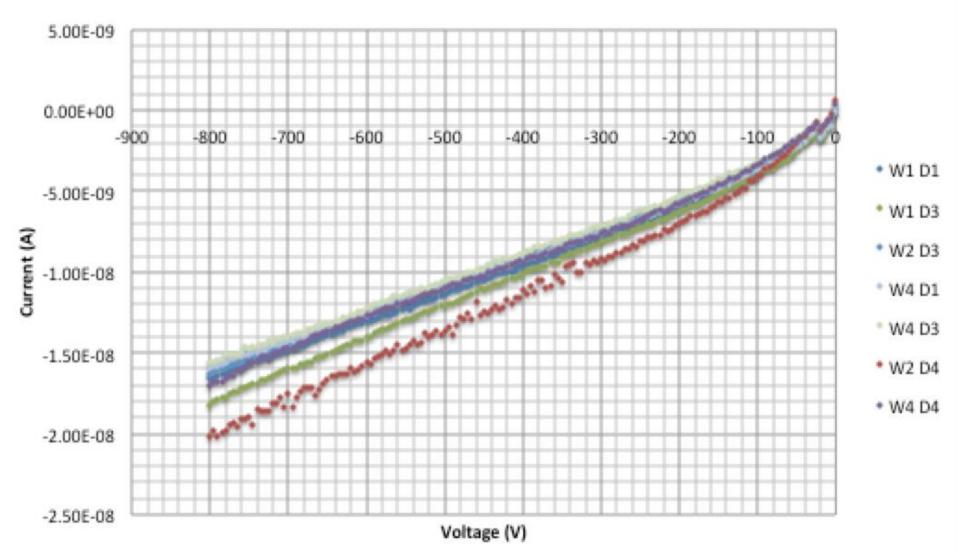

- Silicon On Insulator (SOI) technology enables a thinner wafer without breakage or damage to machinery
- First time the company has produced embedded polysilicon resistors. Goal is to create uniform resistances
- Demonstrate uniformity across wafers and structures.

|            |     | RXXXX | WWW     |         |                 |             |
|------------|-----|-------|---------|---------|-----------------|-------------|
|            | (II |       | ······  | ······  | · · · · · · · · | · · · · · · |
|            |     |       |         |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     |       | <u></u> |         | <u></u>         | <u></u>     |
|            |     |       |         |         |                 |             |
|            |     |       |         | · · · · |                 |             |
|            |     |       | Diode C | ontact  |                 |             |
| Guard Cont | act |       |         |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     | <br>  |         |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     | and I | arg     | a Dia   | h               |             |
|            |     |       |         |         |                 |             |
|            |     |       | esult   |         |                 |             |
|            |     |       | CSUI    |         |                 |             |
|            |     |       |         |         |                 |             |
|            |     |       |         |         |                 |             |



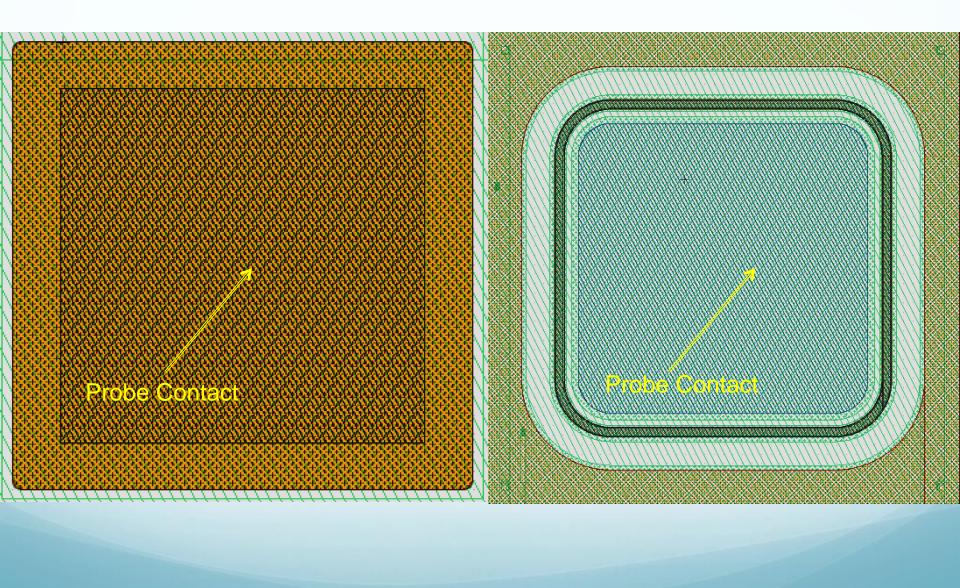

|      |    | a a a |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|------|----|-------|----------------|-----------|--------------|-----------------|--------------|--------------|---------------|---------------|---------------|--------------|---------------|-----------------|---------------|--------------|---------------|--------------|--------------|---------------|--------------|-------------|--------------|---------------|--------------|---------------|
| l b  | P  |       |                |           | en e         |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
| - 14 | 14 | -     |                | 1440)<br> | 080          | 2015            |              | - 1          | NAN)          | 2044-<br>2014 |               |              |               |                 |               |              |               |              |              |               |              |             |              | 11111<br>     | ****         |               |
|      |    |       | -              |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              | 굞           |              |               |              |               |
|      |    |       | <u>-(+:+:+</u> |           | <u></u>      | • <u>(+)+</u> ; | <u>+(+)+</u> | <u>(+(+)</u> | <u>+(+(+)</u> | <u>+(+)+)</u> | <u> + + +</u> | <u>(+(+)</u> | <u>+(+(+)</u> | <u>+ + +</u>    | <u>(+)+)+</u> | <u>(+(+)</u> | <u>+(+(+)</u> | <u>+ + +</u> | <u>(+(+)</u> | <u>+(+(+)</u> | <u>+(+)+</u> | <u>+(+)</u> | <u>(+(+)</u> | <u>+(+(+)</u> | <u>+(+)+</u> | <u>(+(+)+</u> |
|      |    |       |                |           | $\mathbb{N}$ | •               |              |              |               | •             |               | •            | •             | •               | •             | •            | •             |              | •            | •             | •            | •           | •            | •             | •            |               |
|      |    |       |                | •         | . \          |                 | •            |              | •             | •             |               | •            | ·             |                 | •             | ·            | ·             |              | •            | •             | •            | •           | •            | •             | •            |               |
|      |    |       |                |           | •            | Ň               | D            | ro           | hc            | ,<br>(        |               | nt           | 20            | +<br>• <b>t</b> | •             | ·            | •             | •            | •            | •             | •            | •           | •            | •             | •            | •             |
|      |    |       |                |           |              |                 |              | 10           | ne            |               | 0             | I I L        | au            | 1               | 1             | •            | 1             |              | 1            | 1             |              | 1           | 1            | •             | •            | •             |
|      |    |       |                |           |              |                 | •            | •            | •             |               |               | •            | •             |                 | •             | •            |               |              |              | •             |              |             |              | •             | •            | •             |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              | ÷.           | ÷.            |              | ÷.          | ÷.           |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
| - 83 |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              | •             |              | •             |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              | •            | •             |              | •           | •            | •             |              |               |
|      |    |       |                |           |              | •               | •            |              |               | ·             |               | ·            | ·             | •               | ÷             | ·            | ·             | •            | •            | •             | •            | •           | •            | •             | •            | •             |
|      |    |       |                | •         | •            |                 | •            |              |               | •             |               | •            | •             | •               | •             | •            | •             |              | •            | •             | •            | 1           | •            | •             | •            | •             |
|      |    |       |                | •         | •            |                 |              |              |               |               |               | •            | •             |                 |               | •            |               |              |              | •             |              |             |              | •             | •            | •             |
|      |    |       |                |           |              |                 |              |              |               |               |               | •            | •             |                 |               | •            |               |              |              |               |              |             | •            |               |              |               |
|      |    | ***   |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               | ÷            | ÷.           |               | ÷            | ÷.          | ÷.           |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
| - 22 |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |
|      |    |       |                |           |              |                 |              |              |               |               |               |              |               |                 |               |              |               |              |              |               |              |             |              |               |              |               |

#### 1/C^2 Large Diodes Across Wafers 1-4




## Small and Large Diode Conclusions

- Silicon resists breakdown across nearly all tested wafers indicating low levels of impurities
- Leakage currents are low indicating that the guard ring is providing good isolation
- C-V curve indicates full depletion at 170V-close to the expected value.

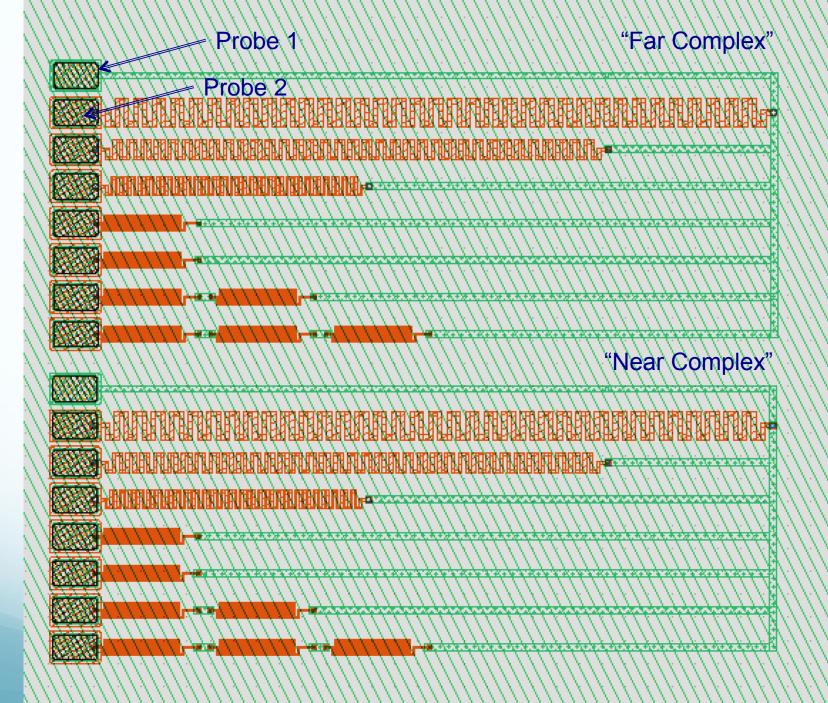



#### 'Normal' IV Curves Wafers 1-4 Diodes 1-4



# J Die Diode Conclusions

- I-V Curves show that a majority of diodes go into breakdown early, indicating that structures this close the edge are prone to the effects of edge currents
- Building structures this close to the 'effective edge' is not viable




MOS1: Oxide Thickness: 4 microns Capacitance: 2.16 nanoFarad (.863 nF/cm^2) MOS2: Oxide Thickness: 5 microns Capacitance: 2.5 nanoFarad (.690 nF/cm^2)

MOS3 Capacitance: 4.75 nanoFarad (21.6 nF/cm<sup>2</sup>)

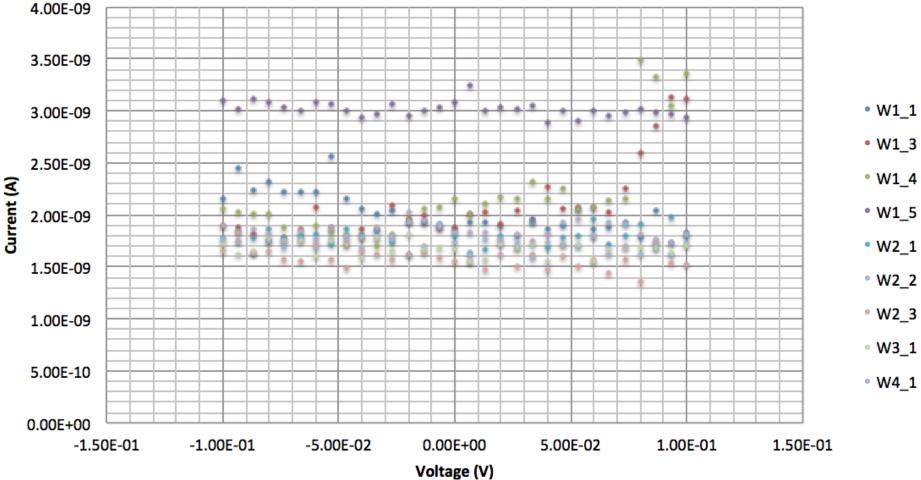
MOS3 Oxide Thickness: 0.17 microns

Expected MOS3: 5.30 nanoFarad (24 nF/cm<sup>2</sup>) 0.10 microns



#### 3 2.5 Ohms per square Values: Target: 1000 Ohms/square 2 W1: 720-800 Ohms/square R8 (3 Series) W2: 750-860 Ohms/square 1.5 R7 (2 Series) W3: 800-950 Ohms/square R6 (Individual) W4: 840-1000 Ohms/square 1 0.5 0 W1F W1N W2F W2N W3F W3N W4F W4N

#### **R6-R8 Series Resistance Comparison Across Complexes**

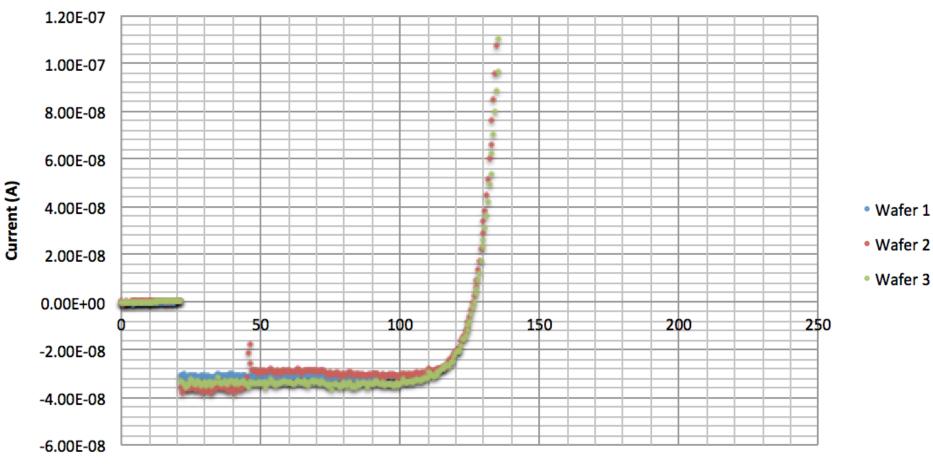

## **Polysilicon Resistor Conclusions**

- Overall resistances are consistent between complexes on each wafer although less than expected
- Manufacturing differences have caused large variation between resistances on different wafers, this must be fixed before further use in AC coupled strip detectors
- Series resistances are somewhat inconsistent illustrating some difficulties with manufacturing



CITICITIAN CITICITIAN

#### **Interstrip Resistances SSD-DC Wafers 1-4**




### Interstrip Resistance Conclusions

- P-stops are working correctly as resistances are >1 gigaOhm for wafers 2-4 and around 0.5 gigaOhm for wafer 1
- Further testing with a more accurate setup (lower humidity, measuring voltage drop with a current source) is required for truly accurate measurements

| 1          |                                        |             |              |                                         |
|------------|----------------------------------------|-------------|--------------|-----------------------------------------|
|            |                                        |             |              |                                         |
|            |                                        |             |              |                                         |
|            |                                        |             |              |                                         |
|            |                                        | 1           |              |                                         |
|            |                                        |             |              |                                         |
|            | N                                      |             |              |                                         |
|            |                                        |             |              |                                         |
|            |                                        |             | XXXXXXXXXX   |                                         |
|            |                                        |             |              |                                         |
|            | ······································ |             | 0000000000   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ |
|            |                                        | 2000000     | 0000000000   | 000000000                               |
|            |                                        |             | 666666666    | 6666666                                 |
|            |                                        | 13 - KAAAAA | *****        | 10000000000                             |
| 0          |                                        |             | XXXXXXXXX    | XXXXXXXXX                               |
|            |                                        |             |              |                                         |
|            |                                        |             |              |                                         |
|            |                                        |             | 800000000    | ~~~~~                                   |
|            |                                        | <u></u>     | 000000000    | (99999988).                             |
|            |                                        |             | Pholoe to HP | 2410 @ 200                              |
|            |                                        |             |              |                                         |
|            |                                        |             |              |                                         |
|            | ······································ |             |              |                                         |
| <b>6</b> 3 |                                        |             |              |                                         |
|            |                                        |             |              |                                         |

#### MOS3 W1-W3 Leakage Current



Voltage (V)

### **Breakdown Voltage Conclusions**

- Breakdowns are expected with this test but the oxide layer held up surprisingly well, especially in the strip detector.
- This, and the higher breakdown voltages suggest a high uniformity of oxide thickness and good resistivity



- Small and Large Diodes are well constructed and underlying bulk silicon is high quality
- J-Die Diodes suffer from early breakdown, especially near the edge of the wafer. In general, detector pixels/strips must be further from the edge to avoid these effects
- Polysilicon Resistors function well, however ohms/square values don't match up with each other or expected values.
- P-stops and guard rings function well
- Oxide Capacitances are at expected values, along with leakage currents

### Thank you for listening!

Special thanks to: Ron Lipton, Rosemary Halenza, Zoltan Gecse, Petra Merkel, and the whole of the SiDet Lab D team.

Additional thanks to: Hannsjörg Weber and the HEP forum for organizing and hosting this talk as well as The University of Chicago for funding.

