The importance of being polarized

A. Ballestrero
in collaboration with
E. Maina G. Pelliccioli
Torino University and INFN

Polarization and VBSPolarized cross sections definitionResonant contributions and approximations$\operatorname{Cos} \Theta^{*}$ distributions and legendre analysis.Cuts, interferences and legendre failureFit to distributions
A more realistic case: $\mathbf{W Z}$
Next steps
Conclusions

The relevance of weak bosons polarizations effects is documented by
TH studies which start from LEP2 times (Gounaris et al Int.J.Mod.Phys A8(1993)) and continue at LHC e.g. Bern .. Phys.Rev.D84(2011), Stirling..EPJ Web. Conf. 49 (2013), Belyaev.. Jhep 1308(2013), Aguilar..Phys.Rev.D93(2016)
and
by several measurements performed which start at CDF and regard at LHC polarization in W and Z production, ttbar events, WZ , WZ in boson fusion ... (ATLAS and CMS)

Importance of polarization in VBS comes from gauge cancellations in longitudinal polarized amplitudes

Longitudinal cross sections depend on the way EWSB is realized
Important for searches of deviations from the SM and hints of New Physics

EWSB gives mass to W, Z. Massive vector bosons have three physical polarization states.

$$
\varepsilon_{L / R}^{\mu}=\frac{1}{\sqrt{2}}(0, \mp 1,-i, 0) \quad \begin{gathered}
\varepsilon_{0}^{\mu}=(\kappa, 0,0, E) / \sqrt{Q^{2}} \quad E \gg M_{W} \quad \varepsilon_{0}^{\mu} \approx p_{W}^{\mu} / M_{W} \quad p_{W}^{\mu}=(E, 0,0, \kappa) \\
0=\text { longitudinal }
\end{gathered}
$$

Longitudinal W+W- -> W+W- scattering

$$
\varepsilon_{0}^{W^{+}} \cdot \varepsilon_{0}^{W^{-}} \propto p^{W^{+}} \cdot p^{W^{-}}=s \quad \Longrightarrow \quad D_{i} \propto s^{2}
$$

Longitudinal components: single diagram $\propto \mathrm{s}^{2}$ cancellations:

$$
\sum \propto s^{1}
$$

SM Higgs contributions $\quad \sum \propto s^{1}$
cancellations between the two groups:

The same for other weak bosons, not for ZZ->ZZ

Full process : 3 types of contributions

Resonant signal

Resonant backgroung

Non resonant

$$
A_{\text {FULL }}=A_{\text {RES }}+A_{\text {NONRES }}
$$

$A_{\text {NonRES }}$ Necessary for gauge invariance! Huge cancellations
Numerically relevant in some phase space regions
Boson polarization well defined for on shell W's and Z's (NWA)
But Breit Wigner modulation is lost and difficult to compare with data.
The only alternative: consider only resonant contribution $A_{\text {RES }}$

- How to define polarization for off shell vector bosons?
- How to cope with gauge invariance?

In any case polarization defined only in some approximation!
And results depend on the reference system in which you define polarization vectors

Polarization for off shell contributions

The propagator of an off shell decay

can be decomposed in a sum of polarization vectors $\varepsilon_{\lambda} \quad-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{M^{2}}=\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu *}$
The amplitude becomes the sum of polarized amplitudes: $\mathcal{A}_{f}=\sum_{\lambda} \frac{\mathcal{A}_{p}^{\mu} \varepsilon_{\mu}^{\lambda} \varepsilon_{\nu}^{\lambda *} \mathcal{A}_{d}^{\nu}}{k^{2}-M_{W}^{2}+i \Gamma_{W} M_{W}}=\sum_{\lambda} \mathcal{A}_{f}^{\lambda}$
The substitution: $\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu *} \rightarrow \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu *}$ defines the various (λ) polarized amplitudes No need to be on-shell

The cross section contains the sum of polarized amplitudes + interferences

Interferences are present also on shell (NWA)!
other methods in MC ?

Considering only resonant contribution may lead to big errors and violates gauge invariance

$$
p p \rightarrow j j e^{-} \overline{\nu_{e}} \mu^{+} \nu_{\mu} \mathcal{O}\left(\alpha_{E M}^{6}\right)
$$

$\left|\eta_{j}\right|<5, p_{t}^{j}>20 \mathrm{GeV}, M_{j j}>600 \mathrm{GeV},\left|\Delta \eta_{j j}\right|>3.6$

$$
\mathrm{M}_{\mathrm{ww}}>300 \mathrm{GeV}
$$

Cuts on invariant mass of the decay products seem to solve the problem as the resonant contibutions dominate

$$
\begin{aligned}
& \qquad\left|M_{I \nu}-M_{w}\right|<30 \mathrm{GeV} \\
& \qquad\left|\eta_{j}\right|<5.5, p_{t}^{j}>10 \mathrm{GeV} \\
& \text { But is cut dependent } \\
& \text { Differences } 5-10 \% \text { in cross sections } \\
& \text { And dangerous in some regions } \\
& \text { when cancellations are important }
\end{aligned}
$$

On shell projection (OSP)

In computing the amplitudes of resonant contributions,
one can project (in the numerator) the four momenta of the decay particles on shell

$$
\mathcal{A}_{f}=\sum_{\lambda} \frac{\mathcal{A}_{p, R E S}^{\mu}(p, k) \varepsilon_{\mu}^{\lambda} \varepsilon_{\nu}^{\lambda *} \mathcal{A}_{d}^{\nu}(k, q)}{k^{2}-M_{W}^{2}+i \Gamma_{W} M_{W}}+\mathcal{A}_{N O N R E S} \quad \Longrightarrow \quad \sum_{\lambda} \frac{\mathcal{A}_{p, R E S}^{\mu}\left(p, k_{O S P}\right) \varepsilon_{\mu, O S P}^{\lambda} \varepsilon_{\nu, O S P}^{\lambda *} \mathcal{A}_{d}^{\nu}\left(k_{O S P}, q_{O S P}\right)}{k^{2}-M_{W}^{2}+i \Gamma_{W} M_{W}}
$$

kind of On shell production X decay modulated by Breit Wigner with all exact spin correlations
If applied to both the two bosons (OSP2) the procedure is gauge invariant (Ward id.)
provided $\Gamma_{W}, \Gamma_{Z} \rightarrow 0$ in $\mathcal{A}_{p, R E S}^{\mu}$ and $\cos \theta_{W}, \sin \theta_{W}$ (no complex mass)
Similar to DPA Denner,Dittmaier,Roth,Wakeroth NP B587(2000)67
Not uniquely defined. To fully specify Phantom conserves:

1. the total four-momentum of the $W W$ system;
2. the direction of the two W bosons in the $W W$ center of mass frame;
3. the direction of each charged lepton in his W center of mass frame.

Applicable only for $\mathrm{M}_{\mathrm{ww}}>2 \mathrm{M}_{\mathrm{w}}$

OSP2 : excellent agreement for $\mathrm{W}+\mathrm{W}$ - without cut on decay invariant mass

OSP1 : projection for only one boson. pp->W/Z+X
can be used for single polarization/resonant studies
gives good results but the other boson width $\neq 0$: not gauge invariant
Not uniquely defined: In PHANTOM conserves:
X four momentum
WZ 3-mom in lab
The direction of W/Z decay in W/Z rest frame

* Modifies initial parton 4-mom to conserve 4-mom

The ZZ case
ZZ -> ZZ processes behave for OSP similar to normal resonant contributions and without cut on $\left\|^{+}\right\|^{-}$inv. mass are very different from FULL
different cuts around the Z pole

cut	FULL	RES OSP	RES NO OSP
$u u \rightarrow u u e^{-} e^{+} \mu^{-} \mu^{+}(4 \mathrm{Z})$			
no cut	44.79	13.02	13.18
30 GeV	17.76	12.64	12.66
5 GeV	10.09	9.55	9.53
$\mathrm{~m}\left(\left.\mathrm{I}^{+}\right\|^{-}\right)>40 \mathrm{GeV}$			

Contributions missing :

When selecting ZZ resonant diagrams, gamma contributions are discarded

In fact

The ZZ case
different cuts around the Z pole

cut	FULL	RES OSP	RES NO OSP
$u u \rightarrow u u e^{-} e^{+} \mu^{-} \mu^{+}(4 \mathrm{Z})$			
no cut	$44.79(13.34)$	13.02	13.18
30 GeV	$17.76(12.66)$	12.64	12.66
5 GeV	$10.09(9.52)$	9.55	9.53
$\mathrm{~m}\left(\mathrm{l}^{+} \mathrm{I}^{-}\right)>40 \mathrm{GeV}$			
pb^{-8}			

numbers in () obtained with gamma-lepton coupling $=0$
OSP2 satisfies Ward Id
Doubts about gauge inv of a theory with Z on shell ?

Similitude between OSP and NO OSP results
ZZ->ZZ has
No unitarity/gauge cancellations
Different from WW->WW WW->ZZ and WZ->WZ

different behaviour
for WW-> ZZ

cut	FULL	RES OSP	RES NO OSP
$u s \rightarrow d$ c $e^{-} e^{+} \mu^{-} \mu+(2 \mathrm{~W} 2 \mathrm{Z})$			
no cut	267.30	248.60	324.38

In practice the above ZZ problem not so relevant as
ZZ production in VBF at LHC includes both
ZZ -> ZZ and WW -> ZZ (largely dominant)

different cuts around the Z pole	cut	FULL	RES OSP	RES NO OSP
	$p p \rightarrow j j e^{-} e^{+} \mu^{-} \mu^{+}$			
	no cut	6.399 (4Z: 0.075)	5.895 (4Z: 0.030)	7.543 (4Z: 0.030)
	30 GeV	5.844 (4Z: 0.036)	5.714 (4Z: 0.029)	5.764 (4Z: 0.029)
	5 GeV	4.321 (4Z: 0.023)	4.305 (4Z: 0.022)	4.315 (4Z: 0.022)

it is evident that for ZZ final state strong cuts on $\mathrm{I}^{+} \mathrm{I}^{-}$invariant masses are necessary

Resonant contributions and approximations

ZW

$$
p p->j \text { j e+ e- } \mu+v_{\mu}
$$

$M_{j j}>500 \mathrm{GeV},\left|\Delta \eta_{j j}\right|>2.5, p_{t}^{j}>20 \mathrm{GeV},\left|\eta_{j}\right|<5,\left|M_{\ell^{+} \ell^{-}}-M_{Z}\right|<15 \mathrm{GeV}, M_{W Z}^{\text {true }}>250 \mathrm{GeV}$
no $p_{t}^{\text {miss }}, \eta_{\ell}, p_{t}^{\ell}$ cuts

	SM
full unpol.	3.980
OSP 1 unpol.	3.969
OSP 2 unpol.	3.939

> OSP1 single (W) resonant

Cross sections in $10^{-4} \mathrm{pb}$: a cut on the true $M_{W Z}$ is understood.
$M_{j j}>500 \mathrm{GeV},\left|\Delta \eta_{j j}\right|>2.5, p_{t}^{j}>20 \mathrm{GeV},\left|\eta_{j}\right|<5,\left|M_{\ell^{+} \ell^{-}}-M_{Z}\right|<15 \mathrm{GeV} M_{W Z}>250 \mathrm{GeV}$,
$\left|\eta_{\ell}\right|<2.5, p_{t}^{\ell}>20 \mathrm{GeV}, p_{t}^{\text {miss }}>40 \mathrm{GeV}$

	SM TRUE	SM RECO
full unpol.	1.364	1.385
OSP 1 unpol.	1.355	1.377
OSP 2 unpol.	1.342	-

RECO:
reconstructed p_{z} neutrino forcing $m\left(\mu+v_{\mu}\right)=m_{W}$
different methods. (for details see Ezio's talk)
Cross sections in $10^{-4} \mathrm{pb}$: a cut on the $M_{W Z}$ is understood (true or reconstructed).
Good agreement

Conclusion: OSP2 for WW cuts for ZZ OSP1 and cut for ZW

Distributions of the decay polarized amplitudes in Boson rest frame angles $0=$ longitudinal $\quad \mathcal{A}_{d}^{0}=i g \sqrt{2} E \sin \theta \quad \mathcal{A}_{d}^{R / L}=-i g E(1 \mp \cos \theta) e^{ \pm i \phi}$

Integrating over the full Φ range interferences disappear.

$$
\frac{1}{\frac{d \sigma(X)}{d X}} \frac{d \sigma(\theta, X)}{d \cos \theta d X}=\frac{3}{8}(1 \mp \cos \theta)^{2} f_{L}(X)+\frac{3}{8}(1 \pm \cos \theta)^{2} f_{R}(X)+\frac{3}{4} \sin ^{2} \theta f_{0}(X)
$$

no lept cuts
polarized components can be extracted from full differential angular distribution by a projection on first 3 Legendre polynomials

Legendre analysis can be used to test MC

In realistic situation cuts on lepton variables prevent their use for determining polarized components
lept cuts

$$
\mathrm{SM}: \mathrm{d} \mathrm{\sigma} / \mathrm{dcos} \theta_{\mathrm{e}}(\mathrm{pb}), \mathrm{M}_{\mathrm{ww}}>300 \mathrm{GeV}
$$

$$
\mathrm{d} \mathrm{\sigma} / \mathrm{d} \cos \theta_{\mathrm{e}-}(\mathrm{pb}), \mathrm{M}_{\mathrm{ww}}>300 \mathrm{GeV}
$$

Pols are affected differently by cutsMainly at $\boldsymbol{\vartheta}=\boldsymbol{\pi}$

$$
\begin{gathered}
p_{t}^{e}>20 \mathrm{GeV}, \quad\left|\eta^{e}\right| \\
\text { interferences (small) } \\
\text { affected differently by cutsM } \\
\text { different shapes }
\end{gathered}
$$

how determine pol xsects from full?

Measured angular distribution can be fitted to a linear combination of MC normalized shapes to obtain the various polarizations.
Verified that this procedure works well for the SM:
starting from generated full angular distributions we reproduce well polarized cross sections and angular distributions.
Fitted results are much better if one uses also the shape of the interference.

Suppose measured distributions correspond to a BSM diffferent from SM

Do we have to repeat the analysis for each model separately? Or the shapes are similar for all models and we can trust the fit made with SM ones?

If not, what is the uncertainty of the fit results?
Tested this possibility for WW fitting Higgless model results with SM shapes
Higgsless model: SM with mh-> , no cancellation of terms \propto s in VBS Unphysical but maximizes differences compared to SM

Fit to distributions

W+W-

no ptmiss cut

$$
p_{t}^{\ell}>20 \mathrm{GeV},\left|\eta^{\ell}\right|<2.5
$$

Light colours: singly polarized noH Dark colours: fit of exact noH using SM shapes
red longitudinal green right blue left black unpolarized

	Long.	L	R	Int.
no Higgs	0.266	0.481	0.231	0.022
Fit	0.265	0.481	0.230	0.024
$M_{W W}>1000 \mathrm{GeV}$				
no Higgs	0.347	0.448	0.173	0.031
Fit	0.344	0.467	0.161	0.029

fractions of the various polarizations

Fit uses SM shapes

OSP1 for W resonant cut $m(e+e-) \pm 15 \mathrm{GeV}$ around Z pole RECO : reconstructed p_{z} neutrino forcing $m\left(\mu+v_{\mu}\right)=m_{w}$

Reconstruction changes the shapes
it remains a big difference among polarized distributions one can still use $\cos \theta$ for fitting the different contributions from the total.
(it works for SM)

A more realistic case:WZ
 model (in)dependence

	Long.	L	R	Int.
no Higgs	0.256	0.548	0.173	0.024
Fit	0.223	0.552	0.205	0.019

true neutrino

	Long.	L	R	Int.
no Higgs	0.261	0.544	0.179	0.017
Fit	0.231	0.530	0.225	0.015

neutrino reconstructed
Not very accurate: for polarized cross sections errors of $\sim 10 \%$ Is this a superior limit due to extreme no Higgs model?

Not only a neutrino reconstruction problem

- Double polarized cross sections

Double longitudinal cross sections are more sensitive to alternative EWSB Fit to 2-dimensional distributions ($\theta_{\mathrm{e}} \theta_{\mu}$) their (in)dependence on the model to be studied

- Polarization in semi-leptonic cannel

WW and ZW contributions

- Distributions in leptonic WW events reconstructing W rest frame with 2 neutrinos (and θ distributions). finding alternative variables which discriminate among polarizations several studies ongoing
- Polarization at $\alpha_{\mathrm{s}}{ }^{2} \alpha_{\mathrm{em}}{ }^{4}+\alpha_{\mathrm{em}}{ }^{6}$
signal or background ? needed in any case
- Qcd corrections
should not be difficult for fully leptonic
they do not modify the shapes of the distributions
- EW corrections
is it possible? are they relevant given the approximation in the definition?

It is extremely important to define in a consistent way the polarized cross section and to find a method to measure them in a model independent way

A lot of work is ahead of us, both TH and EXP
I hope the present workshop will be the starting point of a true wide collaborations among different groups, TH and EXP for VBS polarization physics.

I am looking forward to tomorrow MC talks because

- The methods employed should be discussed and clarified among MC's authors
- It is essential that the results are validated by several MC's

I am looking forward to tomorrow EXP talks because

- It would be important for me to understand how the polarization measurments (WZ, ttbar ..) have been performed in some details

It is extremely important to define in a consistent way the polarized cross section and to find a method to measure them in a model independent way

A lot of work is ahead of us, both TH and EXP
I hope the present workshop will be the starting point of a true wide collaborations among different groups, TH and EXP for VBS polarization physics.

I am looking forward to tomorrow MC talks because

- The methods employed should be discussed and clarified among MC's authors (e.g. Madspin)
- It is essential that the results are validated by several MC's

I am looking forward to tomorrow EXP talks because

- It would be important for me to understand how the polarization measurments (WZ, ttbar ..) have been performed in some details
e.g. in ttbar, reconstruction of the 2 neutrinos how much does it affect distribtions?
in WZ how is it accounted for possibility ot other models?
how the templates are used for measurement ?
what about "uncut " θ distributions?

BACKUP

SM fit of $\cos \theta_{\mathrm{e}-}$ distributions, $\mathrm{M}_{\mathrm{ww}}>300 \mathrm{GeV}$, full set of lepton cuts

Light colours: singly polarized noH Dark colours: fit of exact noH using SM shapes
red longitudinal green right blue left black unpolarized

	Long.	L	R	Int.
no Higgs	0.272	0.450	0.247	0.032
Fit	0.269	0.454	0.246	0.031

