Probing Higgs Boson with VBS

Alexander Belyaev

Southampton U & RAL

AB, O. Eboli, C. Gonzalez-Garcia, K.Mizukoshi, S.Novaes, I. Zacharov, hep-ph/9805229
AB, A. Oliveira, R. Rosenfeld, M. Thomas, arXiv:1212.3860
AB, E. Boos, V. Bunichev, Y. Maravin, A. Pukov, R. Rosenfeld, M. Thomas, arXiv:1405.1617
(Les Houches 2013: Physics at TeV Colliders. Contribution #6)
AB, M.Thomas, P.Schaefers, arXiv:1801.10157

OUTLINE

- Preface
 - the Higgs and vector boson scattering
- $VV \rightarrow VV$ process at the LHC
 - selection of the longitudinal vector bosons
 - model-independent sensitivity to HVV coupling using three main observables
- $VV \rightarrow hhh$ at future pp colliders
 - cross section enhancement, high sensitivity to HVV coupling
- Conclusions

Before Higgs discovery: non-linear \Sigma-model There are many 4D CP-conserving operators that can be written down

where

 $V_{\mu} \equiv (D_{\mu}\Sigma) \Sigma^{\dagger}$

 $\Sigma(x) = \exp\left[i\frac{\varphi^a(x)\tau^a}{v}\right]$

 $T \equiv \Sigma \tau^3 \Sigma^\dagger$

e.g.

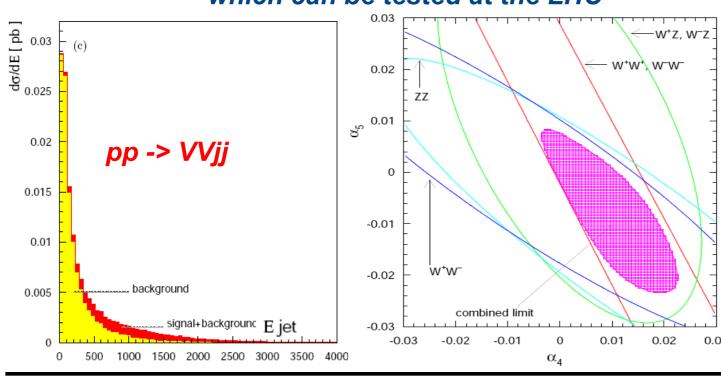
$$\mathcal{L}_{1} = \frac{1}{2}g^{2}\alpha_{1}B_{\mu\nu}\operatorname{Tr}(TF^{\mu\nu})$$

$$\mathcal{L}_{2} = \frac{1}{2}ig\alpha_{2}B_{\mu\nu}\operatorname{Tr}(T[V^{\mu}, V^{\nu}])$$

$$\mathcal{L}_{3} = ig\alpha_{3}\operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$$

$$\mathcal{L}_{4} = \alpha_{4}[\operatorname{Tr}(V_{\mu}V_{\nu})]^{2}$$

$$\mathcal{L}_{5} = \alpha_{5}[\operatorname{Tr}(V_{\mu}V^{\mu})]^{2}$$

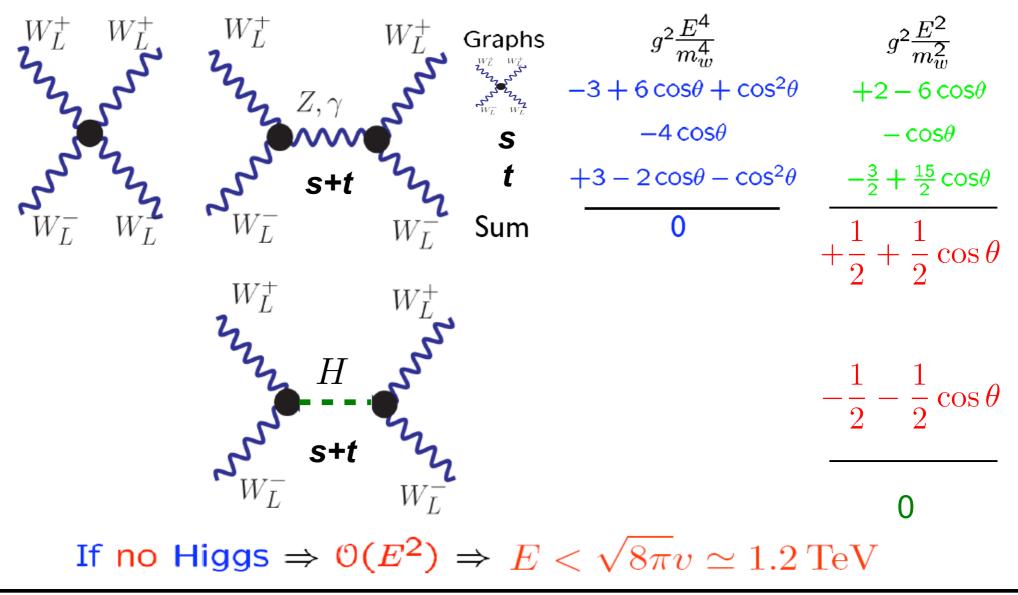

Appelquist, Bernard '80 ; Longitano '80

Before Higgs discovery: non-linear Σ -model							
There are many 4D CP-conserving operators that can be written down							
$\mathcal{L}_1 = \frac{1}{2}g^2 \alpha_1 B_{\mu\nu} \operatorname{Tr}(TF^{\mu\nu})$	$\mathcal{L}_6 = \alpha_6 \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV^{\nu})$	$\mathcal{L}_{11} = \alpha_{11} \operatorname{Tr}[(\mathfrak{N}_{\mu} V^{\mu})^2]$	$\mathcal{L}_{15} = 2i\alpha_{15} \operatorname{Tr}(V_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(TV^{\mu})$				
$\mathcal{L}_2 = \frac{1}{2} i g \alpha_2 B_{\mu\nu} \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$	$\mathcal{L}_{7} = \alpha_{7} \operatorname{Tr}(V_{\mu}V^{\mu})[\operatorname{Tr}(TV_{\nu})]^{2}$	$\mathcal{L}_{12} = \frac{1}{2} \alpha_{12} \operatorname{Tr}(T \mathcal{D}_{\mu} \mathcal{D}_{\nu} V^{\nu}) \operatorname{Tr}(T V^{\mu})$	$\mathcal{L}_{16} = i\alpha_{16} \operatorname{Tr}[T(\mathfrak{D}_{\mu}V_{\nu} + \mathfrak{D}_{\nu}V_{\mu})]$				
$\mathcal{L}_3 = ig\alpha_3 \operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$	$\mathcal{L}_8 = \frac{1}{4}g^2 \alpha_8 [\mathrm{Tr}(TF_{\mu\nu})]^2$	$\mathcal{L}_{13} = \frac{1}{2} \alpha_{13} [\mathrm{Tr}(T \mathcal{D}_{\mu} V_{\nu})]^2$	$ imes { m Tr}(V^{\mu}V^{ u})$				
$\mathcal{L}_4 = \alpha_4 [\mathrm{Tr}(V_\mu V_\nu)]^2$	$\mathcal{L}_{9} = \frac{1}{2} i g \alpha_{9} \operatorname{Tr}(TF_{\mu\nu}) \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$	$\mathcal{L}_{14} = \alpha_{14} [\mathrm{Tr}(F_{\mu\nu}V^{\nu})\mathrm{Tr}(TV^{\mu})$	$\mathcal{L}_{17} = \frac{1}{2}i\alpha_{17} \operatorname{Tr}[T(\mathfrak{V}_{\mu}V_{\nu} + \mathfrak{V}_{\nu}V_{\mu})]$				
$\mathcal{L}_5 = \alpha_5 [\mathrm{Tr}(V_{\mu}V^{\mu})]^2$	$\mathcal{L}_{10} = \frac{1}{2} \alpha_{10} [\mathrm{Tr}(TV_{\mu}) \mathrm{Tr}(TV_{\nu})]^2$	$-\operatorname{Tr}(F_{\mu\nu}V^{\mu})\operatorname{Tr}(TV^{\nu})]$	$ imes \mathrm{Tr}(TV^{\mu})\mathrm{Tr}(TV^{\nu})$				
Appelquist, Bernard	'80 ; Longitano '80		$\mathcal{L}_{18} = \frac{1}{2} i \alpha_{18} \operatorname{Tr}([V_{\mu}, T] \mathfrak{D}^{\mu} \mathfrak{D}^{\nu} V_{\nu})$				

Before Higgs discovery: non-linear Σ -model There are many 4D CP-conserving operators that can be written down $\mathcal{L}_6 = \alpha_6 \operatorname{Tr}(V_{\mu}V_{\nu}) \operatorname{Tr}(TV^{\mu}) \operatorname{Tr}(TV^{\nu}) \mathcal{L}_{11} = \alpha_{11} \operatorname{Tr}[(\mathfrak{D}_{\mu}V^{\mu})^2]$ $\mathcal{L}_{15} = 2i\alpha_{15} \operatorname{Tr}(V_{\mu} \mathfrak{D}_{\nu} V^{\nu}) \operatorname{Tr}(TV^{\mu})$ $\mathcal{L}_1 = \frac{1}{2}g^2\alpha_1 B_{\mu\nu} \operatorname{Tr}(TF^{\mu\nu})$ $\mathcal{L}_{12} = \frac{1}{2}\alpha_{12} \operatorname{Tr}(T \mathfrak{N}_{\mu} \mathfrak{N}_{\nu} V^{\nu}) \operatorname{Tr}(T V^{\mu}) \mathcal{L}_{16} = i\alpha_{16} \operatorname{Tr}[T(\mathfrak{N}_{\mu} V_{\nu} + \mathfrak{N}_{\nu} V_{\mu})]$ $\mathcal{L}_{7} = \alpha_{7} \operatorname{Tr}(V_{\mu}V^{\mu})[\operatorname{Tr}(TV_{\nu})]^{2}$ $\mathcal{L}_2 = \frac{1}{2} i g \alpha_2 B_{\mu\nu} \mathrm{Tr}(T[V^{\mu}, V^{\nu}])$ $\mathcal{L}_8 = \frac{1}{4}g^2 \alpha_8 [\mathrm{Tr}(TF_{\mu\nu})]^2$ $\mathcal{L}_{13} = \frac{1}{2} \alpha_{13} [\mathrm{Tr}(T \mathcal{D}_{\mu} V_{\nu})]^2$ $\times \mathrm{Tr}(V^{\mu}V^{\nu})$ $\mathcal{L}_3 = ig\alpha_3 \operatorname{Tr}(F_{\mu\nu}[V^{\mu}, V^{\nu}])$ $\mathcal{L}_{14} = \alpha_{14} [\mathrm{Tr}(F_{\mu\nu}V^{\nu})\mathrm{Tr}(TV^{\mu})]$ $\mathcal{L}_{17} = \frac{1}{2}i\alpha_{17} \operatorname{Tr}[T(\mathcal{D}_{\mu}V_{\nu} + \mathcal{D}_{\nu}V_{\mu})]$ $\mathcal{L}_4 = \alpha_4 [\mathrm{Tr}(V_\mu V_\nu)]^2$ $\mathcal{L}_9 = \frac{1}{2} i g \alpha_9 \operatorname{Tr}(TF_{\mu\nu}) \operatorname{Tr}(T[V^{\mu}, V^{\nu}])$ $-\mathrm{Tr}(F_{\mu\nu}V^{\mu})\mathrm{Tr}(TV^{\nu})]$ $\mathcal{L}_5 = \alpha_5 [\mathrm{Tr}(V_{\mu}V^{\mu})]^2$ $\mathcal{L}_{10} = \frac{1}{2} \alpha_{10} [\mathrm{Tr}(TV_{\mu}) \mathrm{Tr}(TV_{\nu})]^2$ $\times \mathrm{Tr}(TV^{\mu})\mathrm{Tr}(TV^{\nu})$ Appelquist, Bernard '80 ; Longitano '80 $\mathcal{L}_{18} = \frac{1}{2} i \alpha_{18} \operatorname{Tr}([V_{\mu}, T] \mathfrak{D}^{\mu} \mathfrak{D}^{\nu} V_{\nu})$ which can be tested at the LHC

the only quartic interactions under custodial symmetry

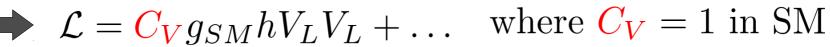
$$\begin{array}{c} \mathcal{L}_{4} = \alpha_{4} (\operatorname{tr} \left[V_{\mu} V_{\nu} \right])^{2} \\ \mathcal{L}_{5} = \alpha_{5} (\operatorname{tr} \left[V_{\mu} V^{\mu} \right])^{2} \end{array}$$

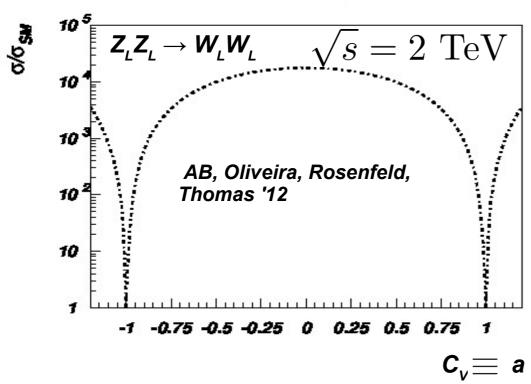

AB, Eboli, Gonzalez–Garcia, Mizukoshi, Novaes, Zacharov '98

followed by

Eboli, Gonzalez-Garcia, Lietti, Novaes '00; Beyer, Kilian, Krstonosic, Monig, Reuter, Schmidt, Schroder '06; Eboli, 0.03 Gonzalez–Garcia, Mizukoshi '06

But we have been expecting Higgs boson as it nicely unitarises $VV \rightarrow VV$ amplitude!





Cancellation requires exact SM coupling!

$$\begin{aligned} \mathcal{L}_{\text{eff}} &= \frac{v^2}{4} \left(1 + 2a \frac{h}{v} + b \frac{h^2}{v^2} + b_3 \frac{h^3}{v^3} + \cdots \right) \operatorname{Tr} \left[\partial_{\mu} U \partial^{\mu} U^{\dagger} \right] \quad \stackrel{\text{Giudice, Grojean,}}{\operatorname{Pomarol, Rattazzi '02}} \\ &+ \frac{1}{2} (\partial_{\mu} h)^2 - \frac{1}{2} m_h^2 h^2 - d_3 \lambda v h^3 - d_4 \frac{\lambda}{4} h^4 + \cdots \qquad \left(U \equiv \Sigma \quad ! \right) \end{aligned}$$

0

- The Large increases in V, V, . scattering, even for small deviations (~10%) from SM.
- Could provide model independent way to probe Higgs boson coupling to gauge bosons (C_{v}).

By power-counting, the scattering amplitude grows with energy as

$$A_{NL\sigma M}(2 \to n) \sim \frac{s}{v^n}$$

By power-counting, the scattering amplitude grows with energy as

$$A_{NL\sigma M}(2 \to n) \sim \frac{s}{v^n}$$

 \mathbf{C}

The cross section is expressed via Amplitude and the phase space as 1

$$\sigma(2 \to n) \sim \frac{1}{s} \mathcal{A}^2(s) \, s^{n-2}$$

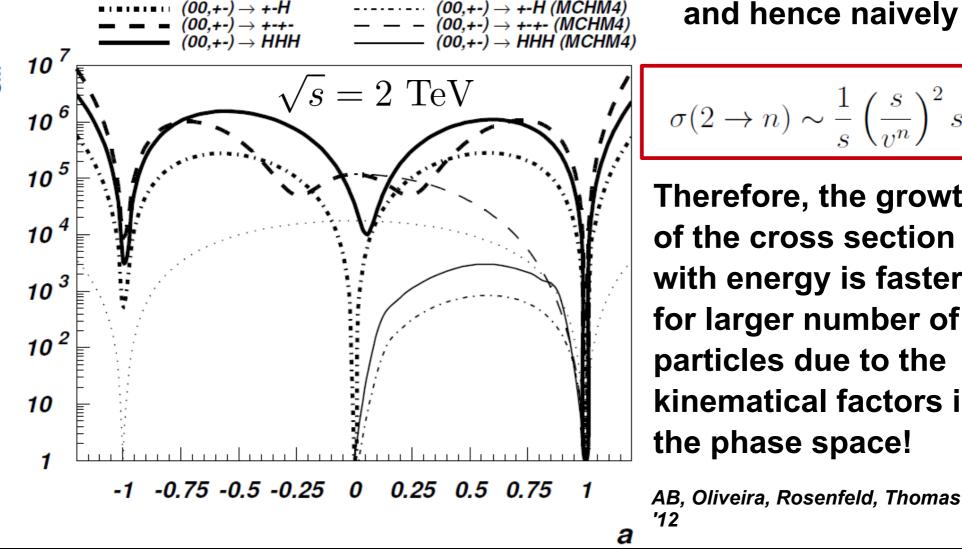
By power-counting, the scattering amplitude grows with energy as

 \mathbf{C}

$$A_{NL\sigma M}(2 \to n) \sim \frac{s}{v^n}$$


The cross section is expressed via Amplitude and the phase space as 1

$$\sigma(2 \to n) \sim \frac{1}{s} \mathcal{A}^2(s) s^{n-2}$$


So, $2 \rightarrow n$ cross section grows as s^{n-1}

$$\sigma(2 \to n) \propto \frac{1}{s} \left(\frac{s}{v^n}\right)^2 s^{n-2}$$

σ/σ_{SM}

$$\sigma(2 \to n) \sim \frac{1}{s} \left(\frac{s}{v^n}\right)^2 s^{n-2}$$

Therefore, the growth of the cross section with energy is faster for larger number of particles due to the kinematical factors in the phase space!

AB, Oliveira, Rosenfeld, Thomas

(00,+-) → *+-*

Transverse "pollution" is one of the main problems!

Transverse "pollution"

♦ VV → VV cross section is dominated by the transverse VV scattering – the main background!

	$\sqrt{s} = 2 \text{ TeV}$		
Channel	CX for $C_v = 1$ (SM) (pb)	CX for $C_v = 0.9$ (pb)	
$Z_L Z_L \longrightarrow W_L W_L$	0.13	295	
$ZZ \rightarrow WW$ (full)	610	655	

AB, Oliveira, Rosenfeld, Thomas '12

- Despite large increases in V_L scattering, the overall effect on spin averaged cross section is moderate.
- One needs to find a way to isolate the longitudinal components of scattering, to enable us to measure C_V

Transverse "pollution" at the level of pp collisions: similar problem

	$14 \mathrm{TeV}$		33 TeV	
Process	with (without) VBF cuts		with (without) VBF cuts	
	a=1.0	a=0.9	a=1.0	a=0.9
	b=1.0	b=1.0	b = 1.0	b=1.0
$pp \rightarrow jjW^+W^-$	95.2 (1820)	99.3 (1700)	512 (5120)	540 (5790)
$pp \rightarrow jjW^+W^-h$	0.011 (0.206)	0.0088 (0.172)	0.0765 (0.914)	0.0626 (0.758)
$pp \rightarrow jjhhh$	1.16×10^{-4} (3.01×10^{-4})	0.0566 (0.0613)	0.00115 (0.00165)	1.85 (1.46)

AB, Oliveira, Rosenfeld, Thomas '12

Transverse "pollution" at the level of pp collisions: similar problem

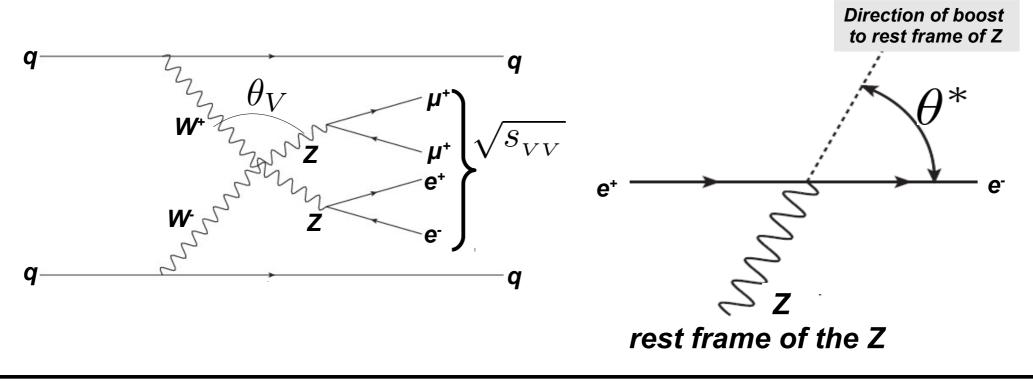
	$14 { m TeV}$		33 TeV	
Process	with (without) VBF cuts		with (without) VBF cuts	
	a=1.0	a=0.9	a=1.0	a=0.9
	b=1.0	b=1.0	b = 1.0	b=1.0
$pp ightarrow jjW^+W^-$	95.2	99.3	512	540
	(1820)	(1700)	(5120)	(5790)
$pp ightarrow jjW^+W^-h$	0.011	0.0088	0.0765	0.0626
	(0.206)	(0.172)	(0.914)	(0.758)
$pp \rightarrow jjhhh$	1.16×10^{-4} (3.01 × 10 ⁻⁴)	0.0566 (0.0613)	0.00115 (0.00165)	(1.85) (1.46)
		* *		

AB, Oliveira, Rosenfeld, Thomas '12

One should notice a problem here! Message: do not fully trust results based on the single package (Madgraph in this case) even if it quotes 1% MC error!

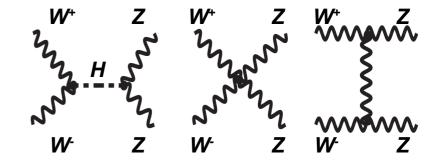
The ideas and results of our Les Houches 2013 team (AB, E. Boos, V. Bunichev, Y. Maravin, A. Pukov, R. Rosenfeld, M. Thomas)

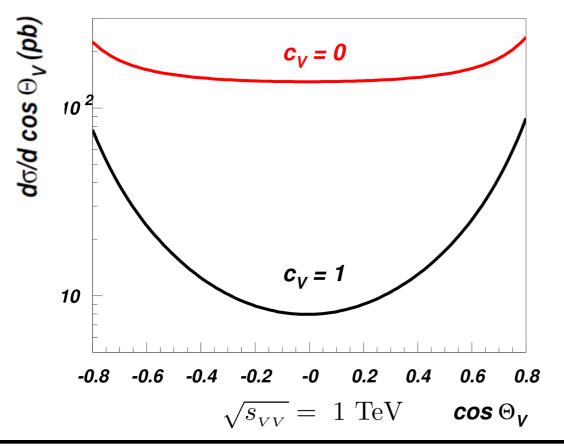
- Devise optimal cuts capable of selecting the contribution from the V₁s
- Hence increase and optimise sensitivity to $\ensuremath{C_V}$


The ideas and results of our Les Houches 2013 team (AB, E. Boos, V. Bunichev, Y. Maravin, A. Pukov, R. Rosenfeld, M. Thomas)

- Devise optimal cuts capable of selecting the contribution from the V₁s
- Hence increase and optimise sensitivity to C_v
- We have found that this can be done using a combination of three main observables:
 - \bullet Observable 1, θ_V
 - Observable 2, $heta^*$
 - \bullet Observable 3, $\sqrt{S_{_{VV}}}$

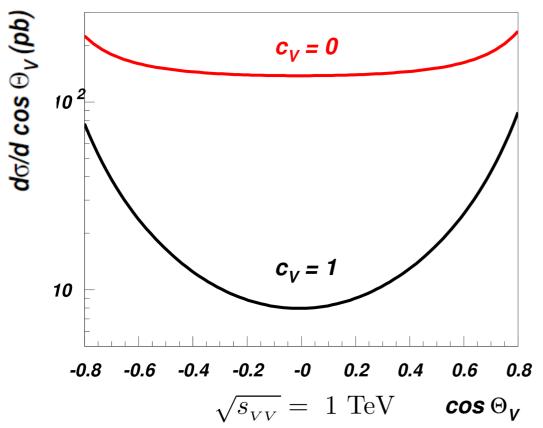
Observables $\theta_V, \theta^*, \sqrt{s_{VV}}$


- θ_V : the angle in rest frame of vector boson scattering between incoming and outgoing vector
- θ*: the angle in rest frame of decaying boson, between fermion in the decay products and direction of boost to get to the rest frame
- $\sqrt{s_{_{VV}}}$: the invariant mass of VV system

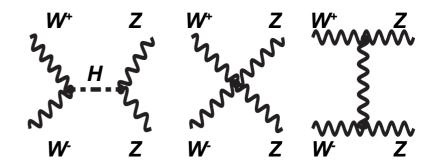


Observable 1, θ_V

Overall increase in cross section if
 C_v ≠ 1 and much larger fraction of
 longitudinally polarized bosons in
 the central region



 $W^+W^- \rightarrow ZZ$

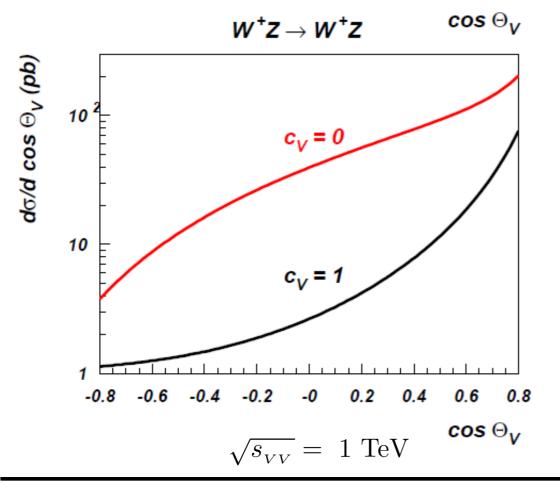


Observable 1, θ_V

Overall increase in cross section if
 C_v ≠ 1 and much larger fraction of
 longitudinally polarized bosons in
 the central region

 Transversely polarised bosons have large contribution from t-channel amplitude with dominant forward-backward scattering
 Therefore cuts which reduce

 $C_v = 1$ more than $C_v \neq 1$ should

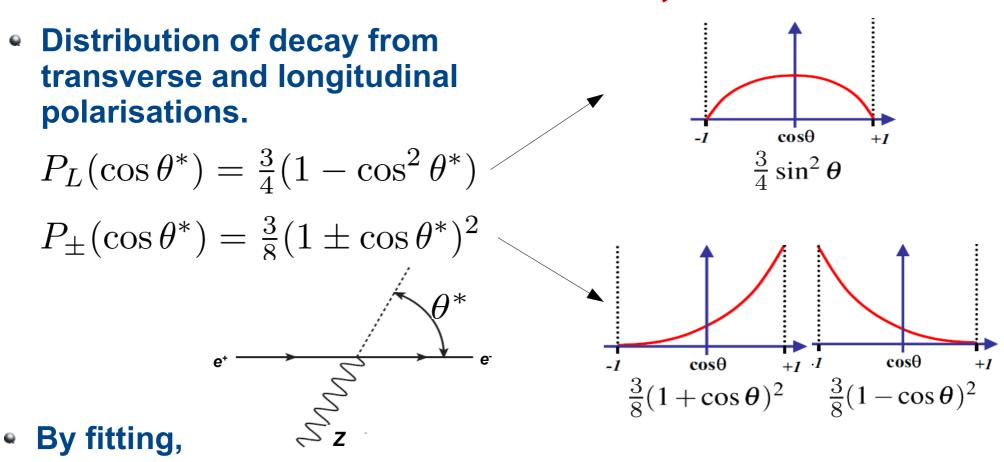

increase the fraction of longitudinally polarized bosons.

e.g. $|\cos \theta_V| < 0.5$

Observable 1, θ_V

Overall increase in cross section if
 C_v ≠ 1 and much larger fraction of
 longitudinally polarized bosons in
 the central region

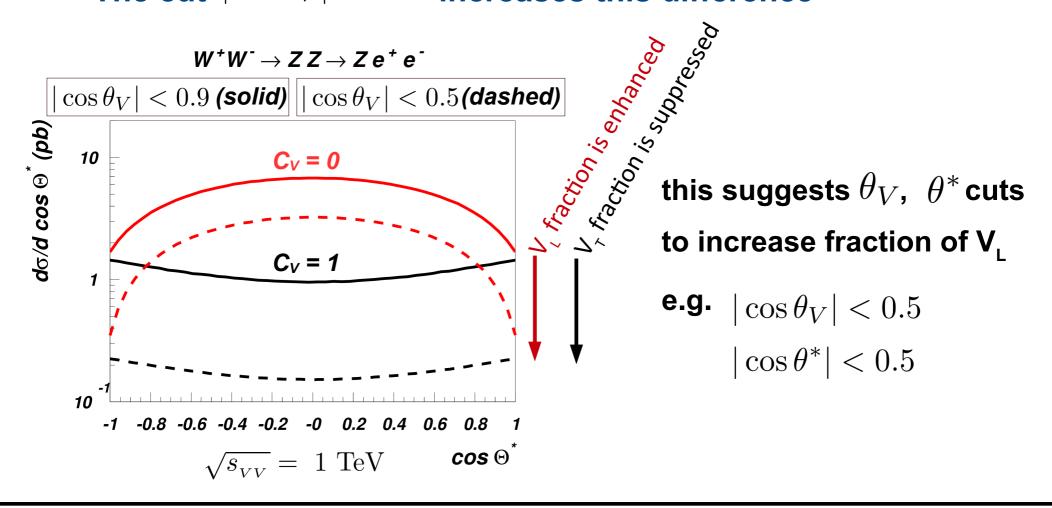
- Transversely polarised bosons have large contribution from t-channel amplitude with dominant forward-backward scattering
- Therefore cuts which reduce


 $C_v = 1$ more than $C_v \neq 1$ should

increase the fraction of longitudinally polarized bosons.

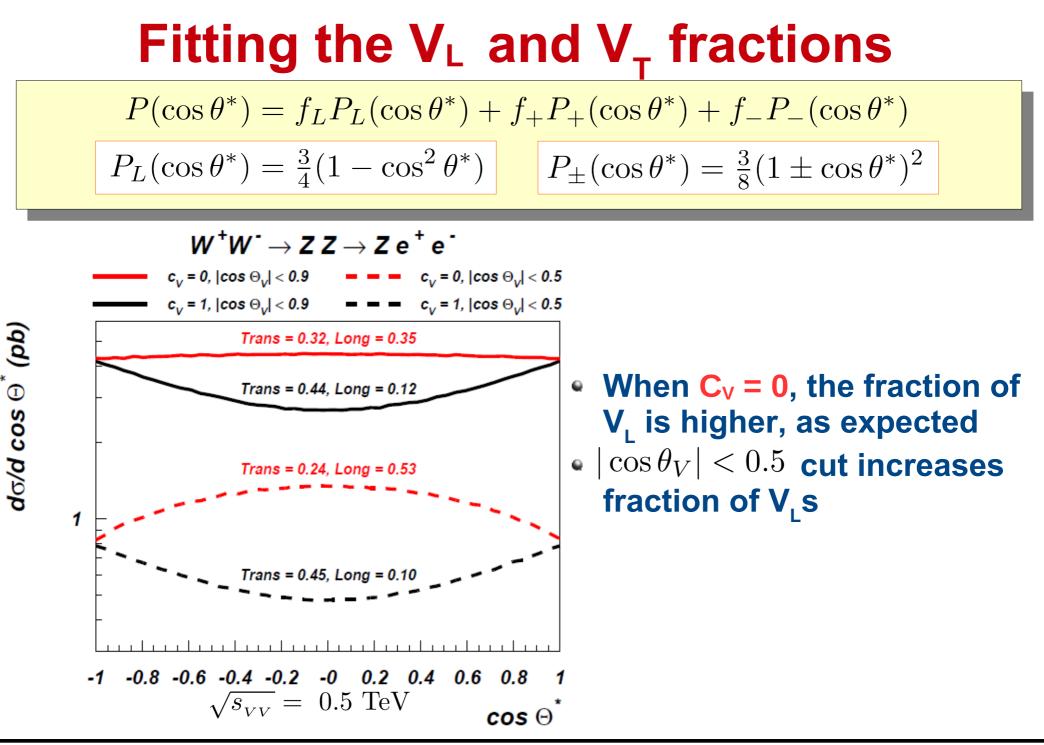
e.g. $|\cos \theta_V| < 0.5$

Observable 2, θ^*


$$P(\cos \theta^*) = f_L P_L(\cos \theta^*) + f_+ P_+(\cos \theta^*) + f_- P_-(\cos \theta^*)$$

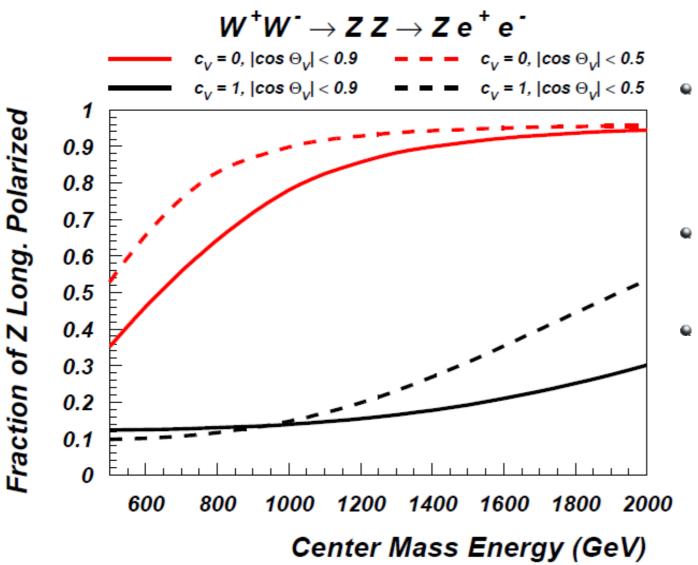
with, $f_L + f_+ + f_- = 1$

we can reconstruct the average polarizations of the vector bosons!

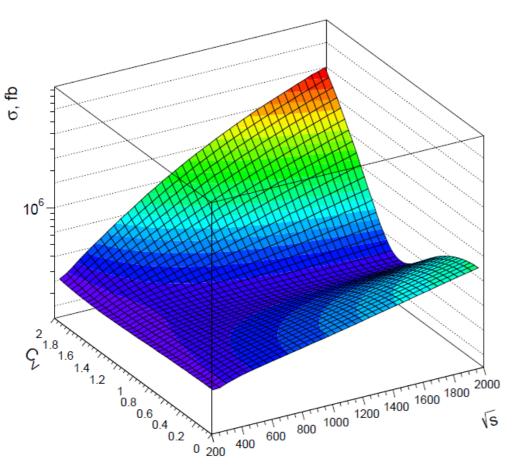


Observable 2, θ^*

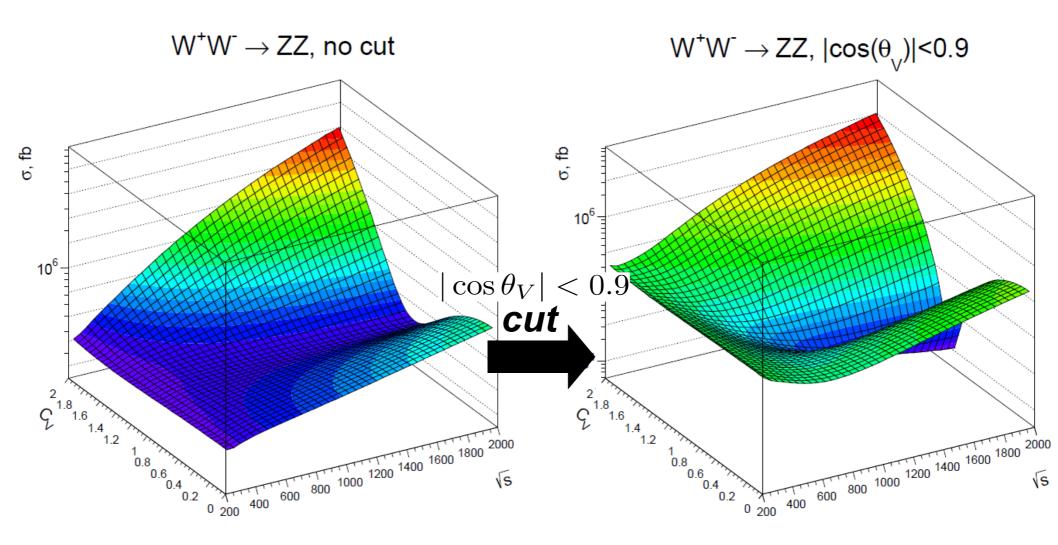
 C_V = 0 case has a much larger cross section for small cos θ* (V_L fraction is enhanced) than the C_V = 1 case
 The cut | cos θ_V | < 0.5 increases this difference



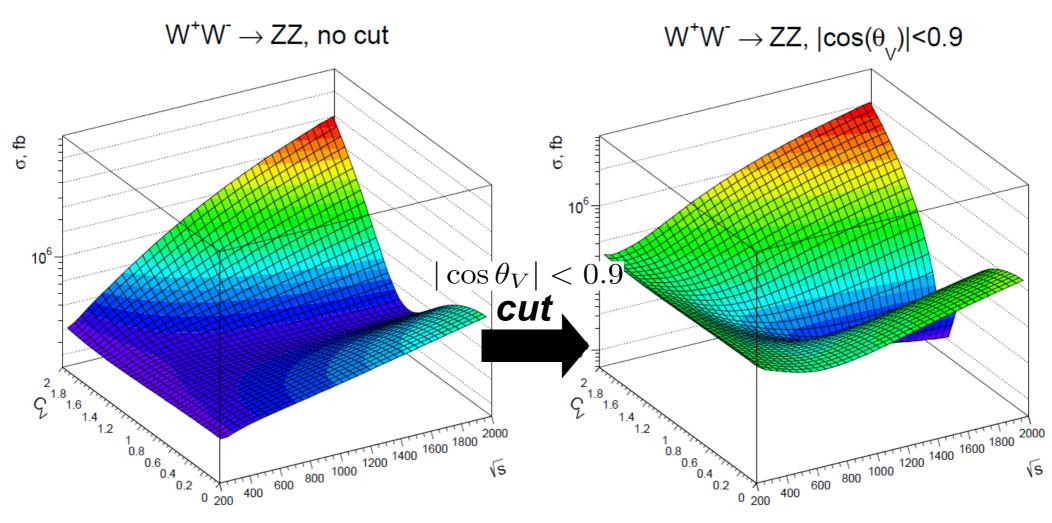
Observable 3, $\sqrt{s_{_{VV}}}$



- As $\sqrt{s_{_{VV}}}$ increases, the V_L fraction dominates for C_v=0
- To be expected as $\sigma(V_L V_L \rightarrow V_L V_L) \propto s$
- Cut for higher $\sqrt{s_{_{VV}}}$ respectively increases fraction of V_Ls

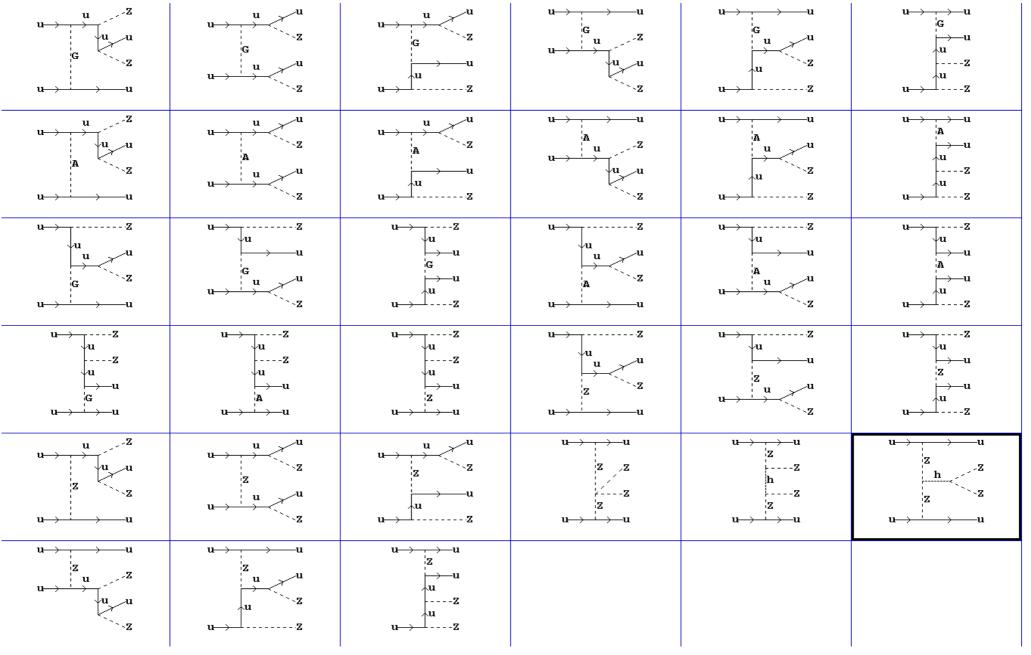

Effect of $cos(\theta_v)$ cut in 3D

 $W^+W^- \rightarrow ZZ$, no cut

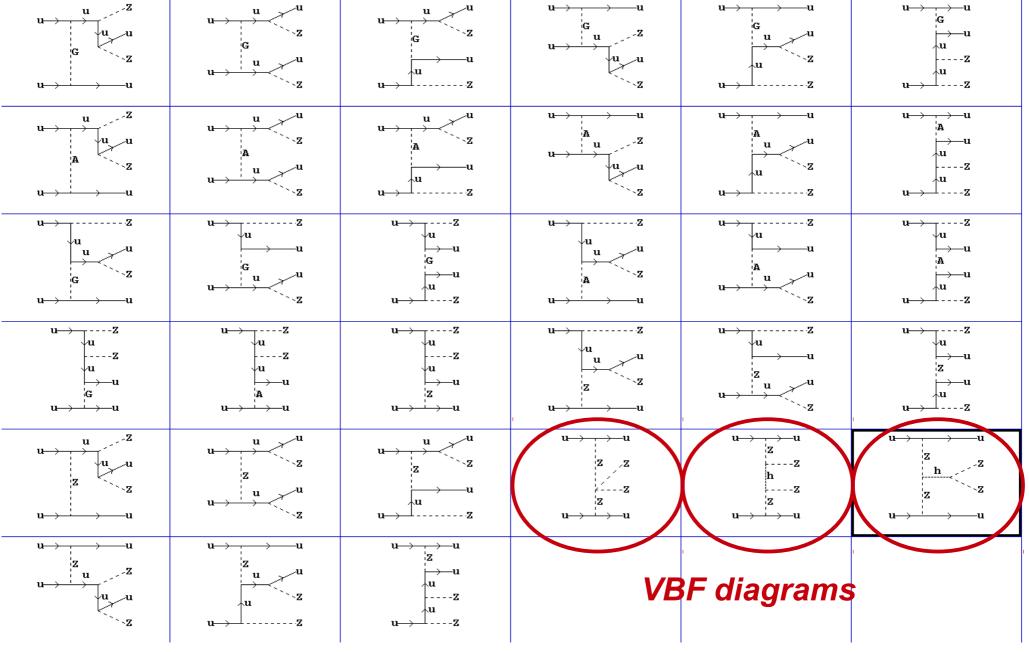


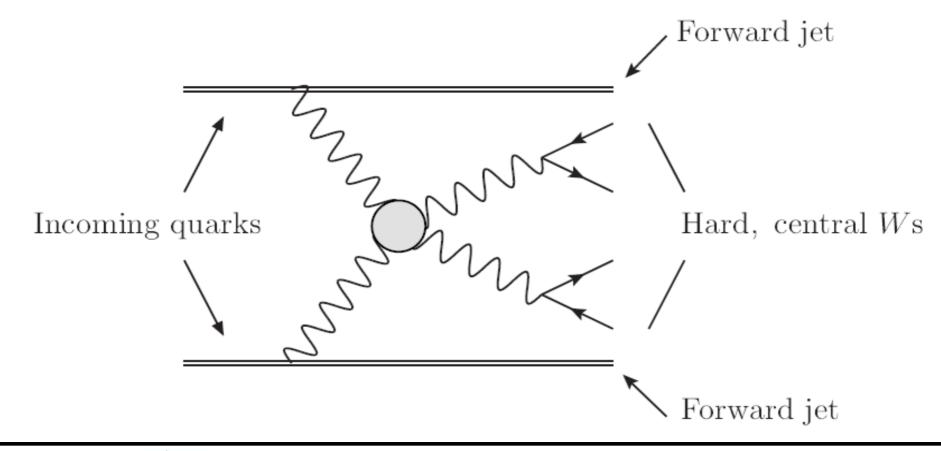
Effect of $cos(\theta_v)$ cut in 3D

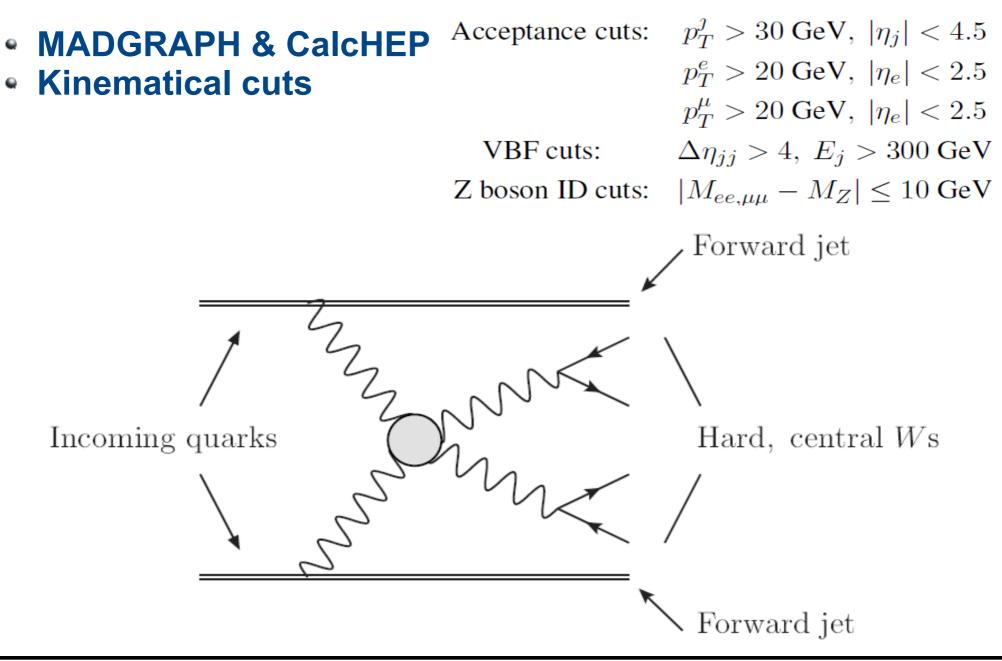
Effect of $cos(\theta_v)$ cut in 3D


dependence on C_v becomes more pronounced after $cos(\theta_v)$ cut which enhance relative L/T polarisation ratio of vector bosons

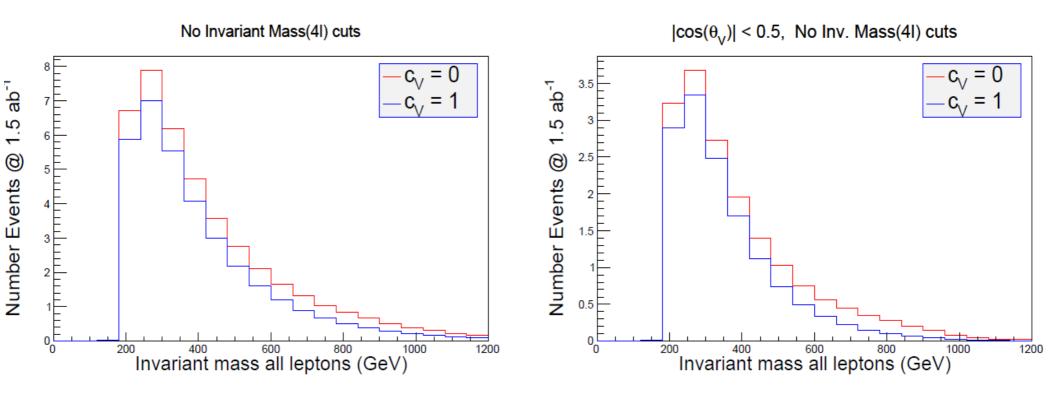
The level of pp scattering


- So far only discussed VV \rightarrow VV at parton level.
 - The full process at LHC is much more involved many more diagrams, large background
 - cuts may not be quite effective
- Need to study LHC sensitivity to probe fraction of longitudinal polarisation and therefore measure C_V
- So far $pp \rightarrow jjZZ \rightarrow e^+e^-\mu^+\mu^-jj$ processes has been studied
- The plan is to extend it to all relevant processes and decays

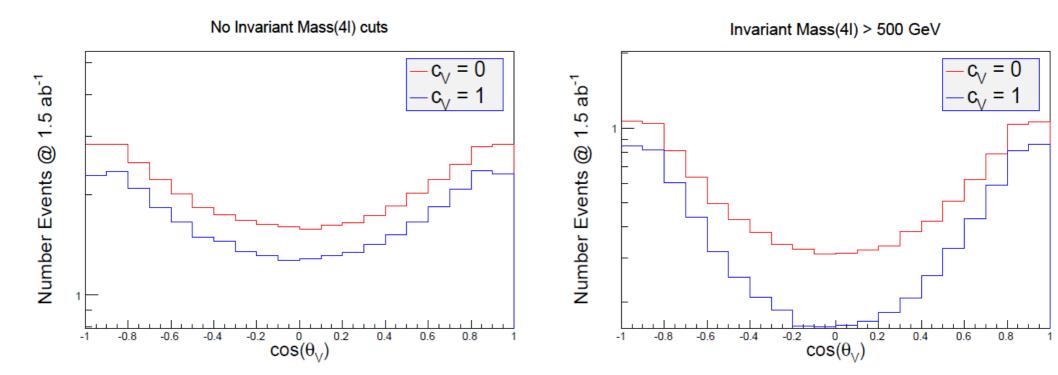




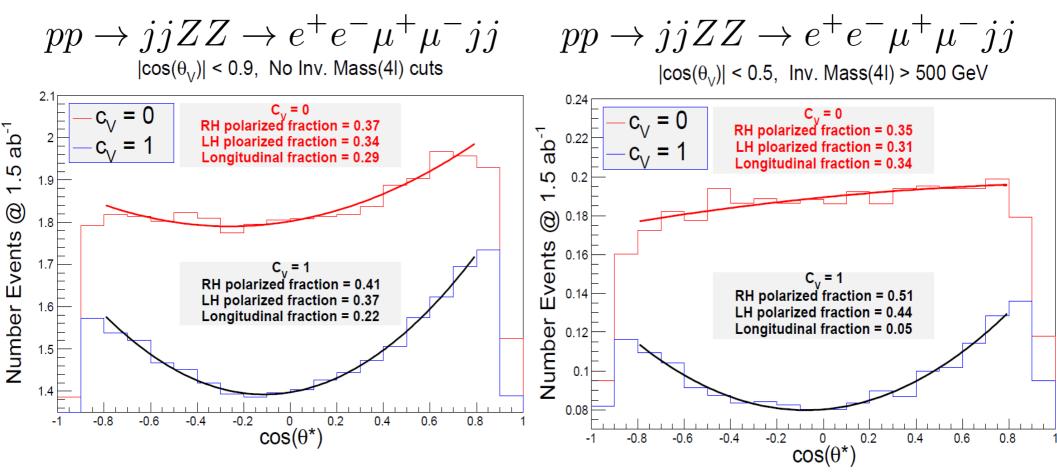
- MADGRAPH & CalcHEP
- Kinematical cuts



- MADGRAPH & CalcHEP
- Kinematical cuts

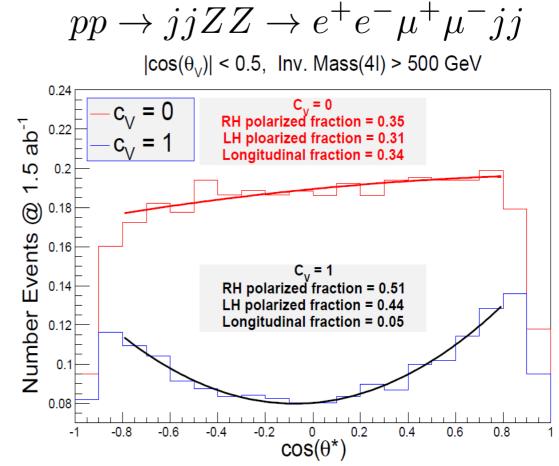

• Definition of θ_v from $q_1q_2 \rightarrow q_3q_4ZZ$:

a) find two pairs of the final and initial quarks, (q1, q3) & (q2, q4) with the minimal angle between them in cms frame b) find p_v^1 , p_v^2 in the initial state: $p_v^1 = q3 - q1 \& p_v^2 = q4 - q2$ c) find θ_v


• Definition of θ_v from $q_1q_2 \rightarrow q_3q_4ZZ$:

a) find two pairs of the final and initial quarks, (q1, q3) & (q2, q4) with the minimal angle between them in cms frame b) find p_v^1 , p_v^2 in the initial state: $p_v^1 = q3 - q1 \& p_v^2 = q4 - q2$ c) find θ_v

Effect of the cuts



Effect of the cuts

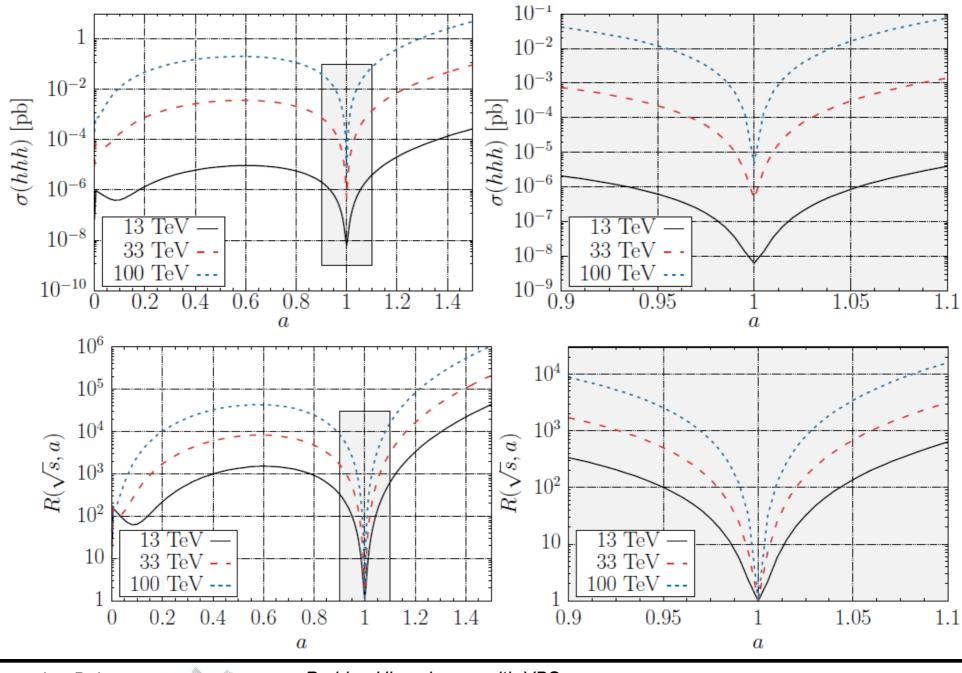
Cuts used

- $|\cos \theta_V| < 0.5$ Invariant mass (41) > 500 GeV
- Large increase in longitudinal fraction from 0.05 to 0.34 for $C_V = 1$ vs $C_V = 0$.
- Very small cross section for studied process, but should be ~ x 250 if semi-leptonic decays and complete set of processes (ZZ, WW, WZ) included.
- Expect sensitivity to C_V at approx 10% with 100 fb^{-1}

- This was our estimation in 2014, now we need to explore details
 - check how the shape of θ^* distributions for V₁, V_R changes with the cuts and use the proper fitting to find the respective fractions
 - use PHASE, 6 final state fermions Accomando, Ballestero, Maina

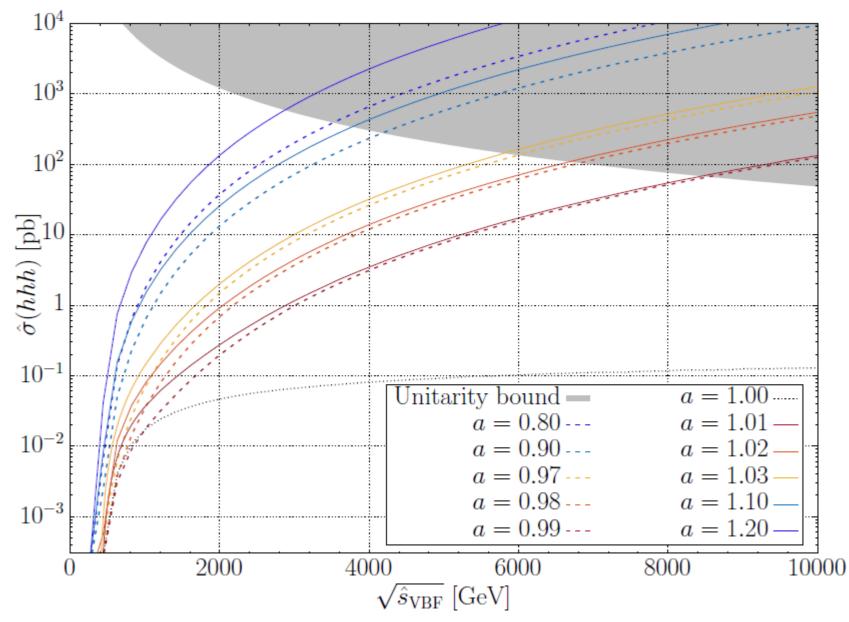
Beyond the VV→**VV scattering** ...

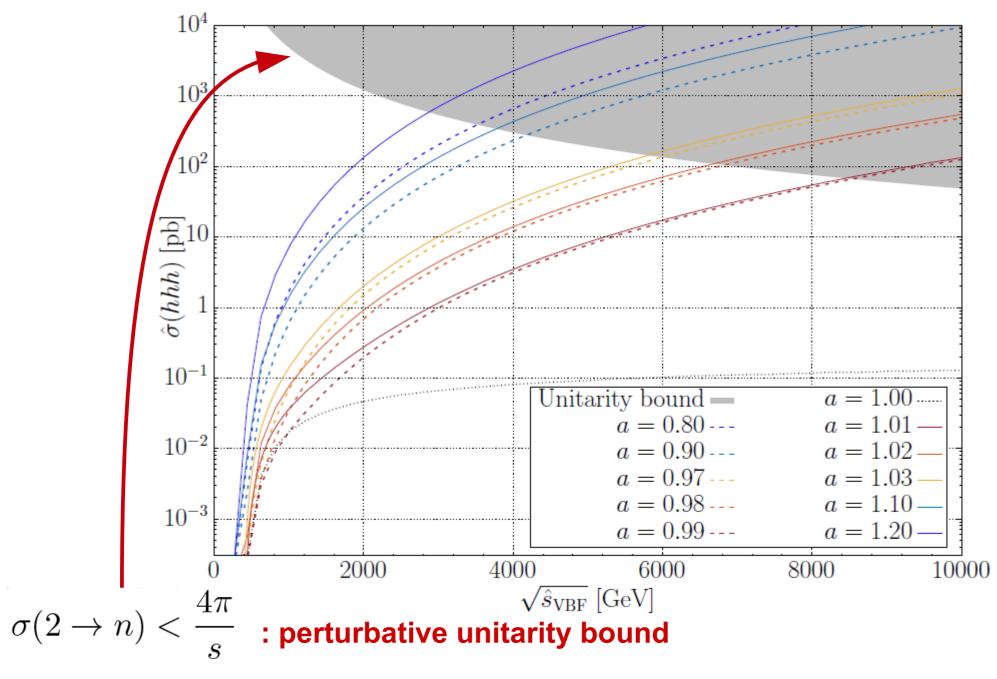
Initial cuts:		VBF cuts:		CalcHEP & Madgraph results				
$\begin{aligned} \Delta R_{jj} &> 0.4\\ P_T^j &> 50 \text{ GeV} \end{aligned}$		$\begin{aligned} \Delta \eta_{jj} &> 5\\ E_j &> 1500 \text{ GeV} \end{aligned}$			AB, Hamers, Thomas (work in progress)			
Process	VBF cuts	$\frac{13}{a=1.0}$	$\frac{\text{TeV}}{a = 0.9}$	$33 \]$ a = 1.0	$\frac{\text{TeV}}{a = 0.9}$	$100^{''}$ $a = 1.0^{''}$	$\frac{\text{TeV}}{a = 0.9}$	
$pp \rightarrow jjW^+W^-$	× ✓	$9.88 \cdot 10^{3}$ 12.92	$9.88 \cdot 10^{3}$ 12.69	$6.06 \cdot 10^4 \\ 475.38$	$6.04 \cdot 10^4$ 473.85	$3.52 \cdot 10^5 \\ 5.49 \cdot 10^3$	$3.52 \cdot 10^5 \\ 5.47 \cdot 10^3$	
$pp \rightarrow jjW^+W^-h$	× ✓	$1.71 \\ 1.26 \cdot 10^{-2}$	$1.43 \\ 8.80 \cdot 10^{-2}$	$\begin{array}{c} 16.25 \\ 0.077 \end{array}$	$15.34 \\ 1.93$	$686.76 \\ 154.26$	$\begin{array}{c} 602.19 \\ 185.18 \end{array}$	
$pp \rightarrow jjhh$	× ✓	$\begin{array}{c} 0.51 \\ 0.02 \end{array}$	$\begin{array}{c} 0.36 \\ 0.01 \end{array}$	$\begin{array}{c} 3.49 \\ 0.77 \end{array}$	$2.93 \\ 0.77$	$16.97 \\ 5.56$	$16.97 \\ 9.20$	
$pp \rightarrow jjhhh$	× ✓	$\begin{array}{c} 2.38 \cdot 10^{-4} \\ 6.14 \cdot 10^{-6} \end{array}$	$2.50 \cdot 10^{-2}$ $2.06 \cdot 10^{-3}$	$\begin{array}{c} 1.97 \cdot 10^{-3} \\ 4.39 \cdot 10^{-4} \end{array}$	$\begin{array}{c} 1.37 \\ 0.75 \end{array}$	$\begin{array}{c} 1.23 \cdot 10^{-2} \\ 4.70 \cdot 10^{-3} \end{array}$	$\begin{array}{c} 46.03 \\ 41.03 \end{array}$	



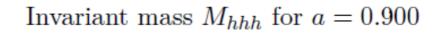
Beyond the VV→**VV scattering** ...

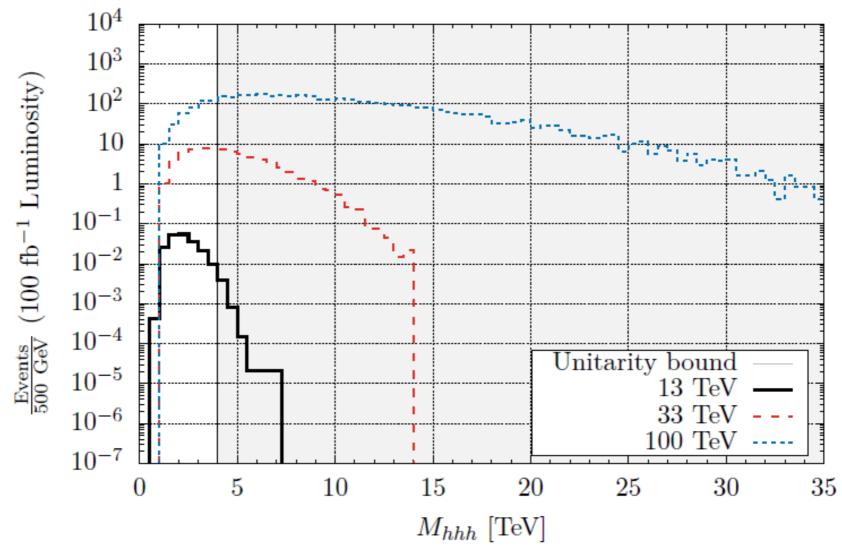
Initial cuts: $ \Delta R_{ij} > 0.4$		VBF cuts: C $ \Delta \eta_{ij} > 5$		Calc⊦	CalcHEP & Madgraph results				
$\frac{ \Delta R_{jj} > 0.1}{P_T^j > 50 \text{ GeV}}$		$ \Delta\eta_{jj} > 5$ $E_j > 1500 \text{ GeV}$			AB, Hamers, Thomas arXiv:1801.10157				
Process	VBF cuts	$\frac{13}{a=1.0}$	$\frac{\text{TeV}}{a = 0.9}$	$\frac{33 \text{ T}}{a = 1.0}$	$\frac{\text{TeV}}{a = 0.9}$	$\frac{100}{a=1.0}$	$\frac{\text{TeV}}{a = 0.9}$		
$pp \rightarrow jjW^+W^-$	× √	$9.88 \cdot 10^{3}$ 12.92	$9.88 \cdot 10^{3}$ 12.69	$6.06 \cdot 10^4$ 475.38	$6.04 \cdot 10^4$ 473.85	$3.52 \cdot 10^5 \\ 5.49 \cdot 10^3$	$3.52 \cdot 10^5 \\ 5.47 \cdot 10^3$		
$pp \rightarrow jjW^+W^-h$	× ✓	$1.71 \\ 1.26 \cdot 10^{-2}$	$1.43 \\ 8.80 \cdot 10^{-2}$	$16.25 \\ 0.077$	$15.34 \\ 1.93$	$686.76 \\ 154.26$	$602.19 \\ 185.18$		
$pp \rightarrow jjhh$	× ✓	$\begin{array}{c} 0.51 \\ 0.02 \end{array}$	$\begin{array}{c} 0.36 \\ 0.01 \end{array}$	$3.49 \\ 0.77$	$2.93 \\ 0.77$	$16.97 \\ 5.56$	$16.97 \\ 9.20$		
	× √		$2.50 \cdot 10^{-2} \\ 2.06 \cdot 10^{-3}$	$\frac{1.97 \cdot 10^{-3}}{4.39 \cdot 10^{-4}}$	$1.37 \\ 0.75$	$1.23 \cdot 10^{-2}$ $4.70 \cdot 10^{-3}$	$46.03 \\ 41.03$		
							-		
		VV→ hł	nh can be	e quite p	romisin	g!			

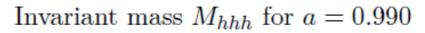

pp
$$\rightarrow$$
 jj hhh process: $R_{\sqrt{s}}(a) = \frac{\sigma^{pp \rightarrow jjhhh}(a)}{\sigma^{pp \rightarrow jjhhh}(a=1)}$

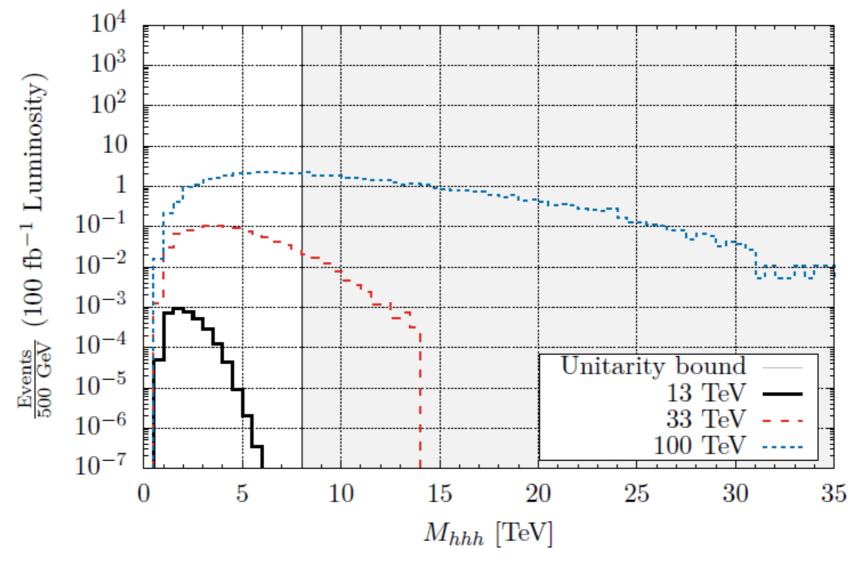

Alexander Belyaev

NEXT


Probing Higgs boson with VBS

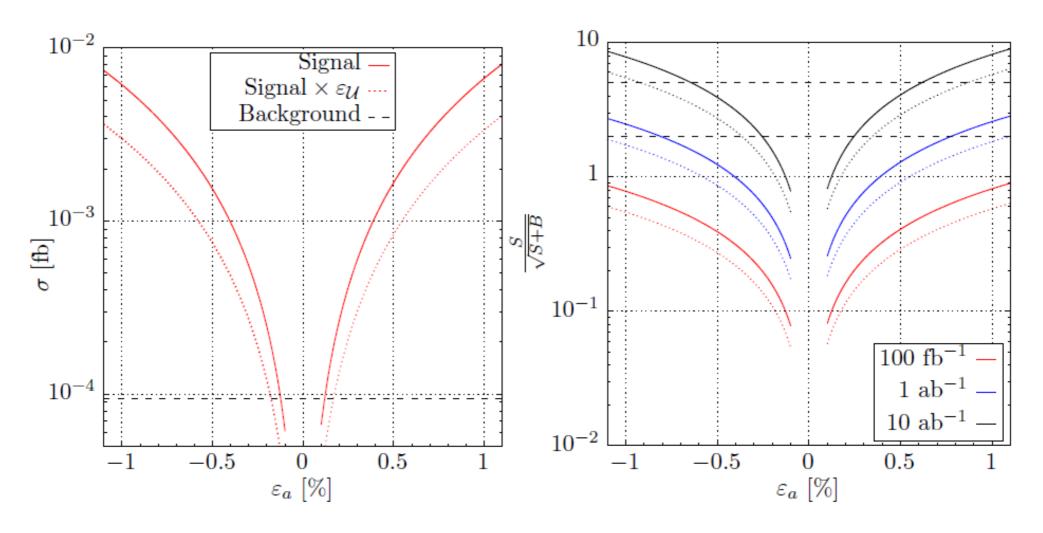






Sensitivity of the 33 TeV pp collider

	33 TeV					
Unitarity not violated		a	ευ	σ [fb]	$\mathcal{L}_{ ext{int}} \cdot \sigma$	$\mathcal{L}_{ ext{int}} \cdot \sigma \cdot arepsilon_{\mathcal{U}}$
		0.70	37.14 %	3.97	397.27	147.55
		0.80	44.18~%	2.61	261.24	115.41
Total number of events		0.90	57.79 %	0.93	93.09	53.79
	-	0.92	61.47~%	0.64	63.76	39.19
$\mathcal{L}_{\rm int} = 100 \rm fb^{-1}$		0.94	67.48~%	0.38	38.16	25.75
		0.96	77.42~%	0.18	18.12	14.03
		0.97	82.31~%	0.11	10.56	8.69
Total number of events		0.98	88.62~%	0.05	4.86	4.30
not violating unitarity		0.99	96.61~%	0.01	1.30	1.26
not violating unitarity		1.01	96.18~%	0.01	1.41	1.35
	1	1.02	88.41 %	0.06	5.57	4.92
		1.03	79.96 %	0.13	12.76	10.21
		1.04	73.08 %	0.23	23.28	17.01
	1	1.06	62.95~%	0.55	55.42	34.89
		1.08	55.69 %	1.05	104.69	58.30 -
33 TeV: could be sensitive to		1.10	50.67~%	1.72	172.06	87.18
		1.20	31.25~%	9.04	904.09	282.53
signature down to <u>5%</u> deviation		1.30	22.32~%	26.16	2616.39	583.98



Sensitivity of 100 TeV pp collider

	100 TeV				
Unitarity not violated	a	ευ	σ [fb]	$\mathcal{L}_{ ext{int}} \cdot \sigma$	$\mathcal{L}_{ ext{int}} \cdot \sigma \cdot arepsilon_{\mathcal{U}}$
	0.70	7.35 %	164.05	16405.29	1205.79
	0.80	7.72~%	107.51	10751.06	829.98
Total number of events	-0.90	13.56~%	37.62	3761.54	510.06
	-0.92	15.96~%	26.15	2615.40	417.42
$\mathcal{L}_{\rm int} = 100 {\rm fb}^{-1}$	0.94	20.07~%	15.19	1519.02	304.87
	0.96	22.06~%	7.44	743.67	164.05
	-0.97	28.31~%	4.30	429.77	121.67
Total number of events	$_{-}0.98$	35.21~%	1.98	198.20	69.78
	0.99	47.24~%	0.52	51.71	24.43
not violating unitarity	1.01	47.82 %	0.55	54.68	26.15
	-1.02	31.00 %	2.72	226.54	70.23
	$_{-}1.03$	25.45~%	5.18	518.47	131.95
	1.04	22.35~%	9.43	947.99	211.88
	1.06	16.46~%	22.50	2249.61	370.29
	-1.08	13.44~%	42.24	4224.29	567.74
100 ToV/ could be considire to		10.11 %	69.44	6943.99	702.04
100 TeV: could be sensitive to	1.20	5.46~%	367.84	36684.40	2002.97
signature down to <u>1%</u> deviation	1.30	3.73 %	1054.19	105419.35	3932.14

Potential of 100 TeV pp collider to probe HVV coupling

HVV coupling can be potentially probed with the permille accuracy, close look at the unitarisation should be taken

Conclusions/Outlook

■ VV→VV study

- extremely important process for model-independent exploration of Higgs properties
- combination of cuts on three variables can potentially isolate the longitudinal components of vector boson scattering
- sensitivity is independent of that which can be deduced from direct Higgs searches
- HVV coupling i can be measured in a much more model-independent way
- work in progress the complete set of ZZ, WW, WZ VBF processes should be included; prospect to measure the HVV coupling with 10% precision at 100 fb⁻¹ in a (more) model-independent way

■ VV→ hhh study

- very sensitive to HVV deviations from SM
- LHC@13 TeV is not sensitive to this signature CS is too low
- 100 TeV pp collider could potentially probe HVV coupling at permille level

