Overview

Phantom update

How to compute processes with polarized vector bosons with Phantom

Survey of recent results, most of them work in progress, all in the SM.

Phantom

Two new versions in /afs/cern.ch/work/b/ballest/public/phantom

Phantom_1_3_2 compiles on intel/gfortran as all 1_3 versions

Phantom_1_5_1_b beta version with polarization machinery

Inconsistency between mothers and color flow has been solved. Integration for processes with initial b and bbar improved

Details of the new features in the readme file Follow the r.in in the version you are using. Read carefully the comments to every single input variable, especially the new ones.

Phantom capabilities

- All $2 \rightarrow 6$ processes $\mathrm{O}\left(\alpha^{6}\right) \& \mathrm{O}\left(\alpha^{4} \alpha_{\mathrm{s}}{ }^{2}\right)$ exactly in SM
- v. 1_5_1_b computes $\mathrm{O}\left(\alpha^{6}\right)$ amplitudes with polarized, resonant, final-state, vector bosons.

$$
-g^{\mu \nu}+\frac{k^{\mu} k^{\nu}}{M^{2}}=\sum_{\lambda} \varepsilon_{\lambda}^{\mu} \varepsilon_{\lambda}^{\nu *} \quad \Longrightarrow \quad \mathcal{A}_{f}=\sum_{\lambda} \frac{\mathcal{A}_{p}^{\mu} \varepsilon_{\mu}^{\lambda} \varepsilon_{\nu}^{\lambda *} \mathcal{A}_{d}^{\nu}}{k^{2}-M_{W}^{2}+i \Gamma_{W} M_{W}}=\sum_{\lambda} \mathcal{A}_{f}^{\lambda}
$$

$$
\mathcal{A}_{f}=\sum_{\lambda} \frac{\mathcal{A}_{p, R E S}^{\mu}(p, k) \varepsilon_{\mu}^{\lambda} \varepsilon_{\nu}^{\lambda *} \mathcal{A}_{d}^{\nu}(k, q)}{k^{2}-M_{W}^{2}+i \Gamma_{W} M_{W}}+\mathcal{A}_{N O N R E S} \quad \Longrightarrow \quad \sum_{\lambda} \frac{\mathcal{A}_{p, R E S}^{\mu}\left(p, k_{O S P}\right) \varepsilon_{\mu, O S P}^{\lambda} \varepsilon_{\nu, O S P}^{\lambda *} \mathcal{A}_{d}^{\nu}\left(k_{O S P}, q_{O S P}\right)}{k^{2}-M_{W}^{2}+i \Gamma_{W} M_{W}}
$$

$$
\underbrace{\left|\mathcal{A}_{f}\right|^{2}}_{\text {coherent sum }}=\underbrace{\sum_{\lambda}\left|\mathcal{A}_{f}^{\lambda}\right|^{2}}_{\text {incoherent sum }}+\underbrace{\sum_{\lambda \neq \lambda^{\prime}} \mathcal{A}_{f}^{\lambda^{*}} \mathcal{A}_{f}^{\lambda^{\prime}}}_{\text {interference term }}
$$

Selecting resonant contributions

```
* POLARIZATION MACHINERY REQUIRES i_pertorder = 1 (alpha_em6̂)
* PARTICLES FROM A RESONANCE MUST BE UNIQUE:
* Z --> e+e-, W --> mu v OK Z --> e+e-, W --> e v NOT OK
* CALL iread('i_ww',i_ww,1) ! i_ww= 0 full computation
* i_ww= 1: 1 resonant w diags, i_ww= 2: 2 resonant w diags
    i_WW 1
        if (i_ww.ge.1) then
        CALL iread('idw',idw,4)! (four integers must always be given)
        The first integer in each pair corresponds to the particle
        14
        CALL iread('ipolw',ipolw,2) ! indexes for first/second w
                                They can be: 0 no polarization, 1 longitudinal,
                                2 left, 3 right , 4 transverse (R+L)
    ipolw 0 0
```

For Z use i_zz, idz, ipolz. For $W Z$ use i_ww= 1, i_zz= 1 .

Single Resonant

Double Resonant
(also Single Resonant)

On shell projection

Channels

Channel $\quad \mathcal{O}\left(\alpha_{E M}^{6}\right) \sigma(\mathrm{fb}) \quad \mathcal{O}\left(\alpha_{E M}^{6}\right) / \mathcal{O}\left(\alpha_{E M}^{4} \alpha_{S}^{2}\right)$

$p p \rightarrow j j e^{-} \bar{\nu}_{e} \mu^{+} \nu_{\mu}$	1.75	1
$p p \rightarrow j j e^{+} \nu_{e} \mu^{+} \nu_{\mu}$	1.40	10
$p p \rightarrow j j e^{+} e^{-} \mu^{+} \nu_{\mu}$	0.14	0.5
$p p \rightarrow j j e^{+} e^{-} \mu^{+} \mu^{-}$	0.02	1

LO only. VBS like cuts, slightly different for different channels. Lepton cuts. No b 's in the initial and final state, that is no top contributions.

Factor 4 when summing over all lepton combinations.
All results for LHC@13TeV

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e}^{-} v^{\mu^{+} v_{(1)}}$

$$
\begin{aligned}
& \left|\eta_{j}\right|<5 ; \quad p_{t}^{j}>20 \mathrm{GeV} ; \quad M_{j j}>600 \mathrm{GeV} ; \quad\left|\Delta \eta_{j j}\right|>3.6 ; \quad \eta_{j_{1}} \cdot \eta_{j_{2}}<0 \\
& p_{t}^{e}>20 \mathrm{GeV} ; \quad\left|\eta^{e}\right|<2.5
\end{aligned}
$$

JHEPO3(2018)170

Polarization fractions as functions of $M_{w w}$

Longitudinal fraction decreases at large M_{ww} Not required by unitarity. All Amps \rightarrow const.

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e}^{-} v \mu^{+} v_{(2)}$

W^{-}polarized, W^{+}unpolarized

Full
Longitudinally polarized W's and their decay leptons mainly at low pt. Bad news

$\mathrm{W}^{+} \mathrm{W}^{+} \rightarrow \mathrm{e}^{+} v \mu^{+} v_{(1)}$

$$
\left|\eta_{j}\right|<4.5 ; \quad p_{t}^{j}>30 \mathrm{GeV} ; \quad M_{j j}>500 \mathrm{GeV} ; \quad\left|\Delta \eta_{j j}\right|>2.5 ;\left|\Delta \eta_{j \ell}\right|>0.3 ;
$$

$$
p_{t}^{e}>20 \mathrm{GeV} ; \quad\left|\eta^{e}\right|<2.5 ; \quad p_{T}>40 \mathrm{GeV} ; \quad\left|\Delta \eta_{\ell \ell}\right|>0.3 ; \quad M_{\ell \nu \ell \nu}>200 \mathrm{GeV} .
$$

Same as $\mathrm{W}^{+} \mathrm{W}^{+}$report
Eur.Phys.J.C. (2018) 78:671

No Reconstruction (?)
$\sigma_{\text {pol1 pol2 }} / \sigma_{\text {tot }} \quad$ full range

OO	0.06
OT	0.38
TT	0.57

$\sigma_{00} / \sigma_{\text {tot }} \sigma_{0 \mathrm{~T}} / \sigma_{\mathrm{tot}}$ decrease with M_{ww}
Transverse:
$-g^{\mu \nu}+\frac{p^{\mu} p^{\nu}}{M^{2}} \rightarrow \varepsilon_{R}^{\mu} \varepsilon_{R}^{* \nu}+\varepsilon_{L}^{\mu} \varepsilon_{L}^{* \nu}$

$\mathrm{W}^{+} \mathrm{W}^{+} \rightarrow \mathrm{e}^{+} v \mu^{+} v_{(2)}$

Legends: first polarization refers to $\mathrm{W} \rightarrow \mathrm{e} v$ second to $\mathrm{W} \rightarrow \mu \nu$

$$
\mathrm{W}_{\mathrm{e}}: \mathrm{T} \quad \mathrm{~W}_{\mu}: 0 \quad \mathrm{~W}_{\mathrm{e}}: 0 \quad \mathrm{~W}_{\mu}: \mathrm{T}
$$

A transverse/longitudinal W has basically the same pt, η distributions, whatever the other W polarization

$\mathrm{W}^{+} \mathrm{W}^{+} \rightarrow \mathrm{e}^{+} v \mu^{+} v(3)$

$z_{\mathrm{e}^{+}}=\frac{y_{\mathrm{e}^{+}}-\frac{y_{\mathrm{j}_{1}+y_{j_{2}}}^{2}}{2}}{\left|\Delta y_{j j}\right|}$.

Zeppenfeld variable

Legends: first polarization refers to $\mathrm{W} \rightarrow \mathrm{e} v$ second to $\mathrm{W} \rightarrow \mu \nu$
Pt_{e} not descrbed as well as other variables by the incoherent sum of polarized cross sections

$\mathrm{W}^{+} \mathrm{W}^{+} \rightarrow \mathrm{e}^{+} v \mu^{+} v_{(4)}$

$\mathrm{Z} \mathrm{W}^{+} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} v_{(1)}$

$\left|\eta_{j}\right|<5 ; \quad p_{t}^{j}>20 \mathrm{GeV} ; \quad M_{j j}>500 \mathrm{GeV} ; \quad\left|\Delta \eta_{j j}\right|>2.5 ; \quad P_{T}>40 \mathrm{GeV} ;$
$p_{t}^{e}>20 \mathrm{GeV} ; \quad\left|\eta^{e}\right|<2.5 ; \quad M_{\ell \ell \ell \nu}>250 \mathrm{GeV} ; \quad\left|M_{e^{+} e^{-}}-M_{Z}\right|<15 \mathrm{GeV}$.

$\sigma_{\text {wpol }} / \sigma_{\text {tot }} \quad$ full range MZ true Long.
0.18

Left

$P_{z, v}$ Reconstruction in single W proc. (1)

$$
\begin{aligned}
&\left(p^{\mu}+p^{\nu}\right)^{2}=M_{W}^{2} \\
& p_{z}^{\nu}=\frac{\alpha p_{z}^{\mu} \pm \sqrt{\alpha^{2} p_{z}^{\mu 2}-\left(E^{\mu 2}-p_{z}^{\mu 2}\right)\left(E^{\mu 2} p_{T}^{\nu 2}-\alpha^{2}\right)}}{E^{\mu 2}-p_{z}^{\mu 2}} \\
& \alpha=\frac{M_{W}^{2}}{2}+p_{x}^{\mu} p_{x}^{\nu}+p_{y}^{\mu} p_{y}^{\nu}
\end{aligned}
$$

Novak tomorrow

If $\Delta<0$ set $\Delta=0$;
If $\Delta>0$:
If the two solutions have opposite sign, select $p_{z, v}$ with same sign of $p_{z, e}$ If the two solutions have same sign, select $p_{z, v}$ with smaller $\Delta R(e v)$

CMS AN 2007/005

$P_{z, v}$ Reconstruction in single W proc. (2)

$$
\begin{aligned}
& p=\left(p^{+}, p^{-}, \mathbf{p}_{\perp}\right), \quad p^{ \pm}=\frac{E \pm p_{z}}{\sqrt{2}}, \quad p \cdot q=p^{+} q^{-}+p^{-} q^{+}-\mathbf{p}_{\perp} \cdot \mathbf{q}_{\perp} \\
& p=\left(e^{y} \sqrt{\frac{m^{2}+\mathbf{q}_{\perp}^{2}}{2}}, e^{-y} \sqrt{\frac{m^{2}+\mathbf{q}_{\perp}^{2}}{2}}, \mathbf{p}_{\perp}\right) \\
& \frac{M_{W}^{2}}{2}=\sqrt{\frac{\mathbf{p}_{\ell, \perp}^{2}}{2}} \sqrt{\frac{\mathbf{p}_{\nu, \perp}{ }^{2}}{2}}\left(e^{\Delta y}+e^{-\Delta y}\right)-\mathbf{p}_{\ell, \perp} \cdot \mathbf{p}_{\nu, \perp}
\end{aligned}
$$

When there are two solutions, they are related by $\Delta \mathrm{y} \Leftrightarrow-\Delta \mathrm{y}, \Delta \mathrm{y}=\mathrm{y}_{1}-\mathrm{y}_{v}$. The two ΔR are equal.

Try selecting $p_{z, v}$ for which the total mass of the event is smaller.

$\mathrm{P}_{\mathrm{z}, \mathrm{v}}$ Reconstruction in single W proc. (3)

select $p_{z, v}$ with smaller $\Delta R(e v)$

select $p_{z, v}$ with smaller event mass

Only events with $\Delta>0$ and two solutions with same sign

$\mathrm{Z} \mathrm{W}^{+} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} v_{(2)}$

$\mathrm{Z} Z \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}(1)$

$$
\begin{aligned}
& \left|\eta_{j}\right|<5 ; \quad p_{t}^{j}>20 \mathrm{GeV} ; \quad M_{j j}>600 \mathrm{GeV} ; \quad\left|\Delta \eta_{j j}\right|>3.6 \\
& p_{t}^{e}>20 \mathrm{GeV} ; \quad\left|\eta^{e}\right|<2.5 ; \quad M_{\ell \ell \ell}>300 \mathrm{GeV} ; \quad\left|M_{\ell^{+} \ell^{-}}-M_{Z}\right|<5 \mathrm{GeV} .
\end{aligned}
$$

Antiparticle decay distribution:

$$
\begin{aligned}
& \begin{aligned}
\frac{1}{\sigma} \frac{d \sigma}{d \cos \theta^{*}} & =\frac{3}{8}\left(1+\cos ^{2} \theta^{*}-\frac{2\left(c_{L}^{2}-c_{R}^{2}\right)}{\left(c_{L}^{2}+c_{R}^{2}\right)} \cos \theta^{*}\right) \\
& +\frac{3}{4} \sin ^{2} \theta^{*} f_{0},
\end{aligned} \\
& \text { No OSP }
\end{aligned}
$$

$\mathrm{Z} \mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}(2)$

$\mathrm{Z} \mathrm{Z} \rightarrow \mathrm{e}^{+} \mathrm{e}^{-} \mu^{+} \mu^{-}(3)$

Conclusions

Full VBS processes are reproduced at the \% level by the sum of polarized on shell reactions+decay with Breit-Wigner modulation

Long-Long cross sections are small
Long-Transv are larger
Transv-Transv are largest

Besides decay angles, a number of kinematic distribution help separating the vector polarizations

Phantom provides a flexible and convenient tool for polarization studies in VBS.

Ce n'est qu'un début ...

Spares

Single $W \rightarrow$ Iv differential cross section

$$
\begin{gathered}
\frac{d \sigma}{d X d \cos \theta d \phi} \propto\left|\mathcal{A}_{p}^{0}\right|^{2} \sin ^{2} \theta+\left|\mathcal{A}_{p}^{R}\right|^{2}(1-\cos \theta)^{2}+\left|\mathcal{A}_{p}^{L}\right|^{2}(1+\cos \theta)^{2} \\
+2 \operatorname{Re}\left(\mathcal{A}_{p}^{R} \mathcal{A}_{p}^{L *} e^{2 i \phi}\right)\left(1-\cos ^{2} \theta\right)+2 \operatorname{Re}\left(\mathcal{A}_{p}^{R} \mathcal{A}_{p}^{0 *} e^{i \phi}\right)(1-\cos \theta) \sin \theta \\
\\
\quad+2 \operatorname{Re}\left(\mathcal{A}_{p}^{L} \mathcal{A}_{p}^{0 *} e^{-i \phi}\right)(1+\cos \theta) \sin \theta
\end{gathered}
$$

INTERFERENCE TERMS cancel ONLY WHEN INTEGRATED OVER ϕ. In practice NEVER.

In this case:

$$
\frac{1}{\sigma} \frac{d \sigma}{d X d \cos \theta}=\frac{3}{4} f_{0}(X) \sin ^{2} \theta+\frac{3}{8} f_{R}(X)(1-\cos \theta)^{2}+\frac{3}{8} f_{L}(X)(1+\cos \theta)^{2}
$$

Polarization fractions extracted projecting cos૭ distribution on first 3 Legendre polynomials Does not work with cuts.

Interference among pols. are present for any W production channel

$\mathrm{W}^{+} \mathrm{W}^{-} \rightarrow \mathrm{e}^{-} v \mu^{+} v_{(3)}$

Not all variables are reproduced well
Z. Bern et al.,

Phys. Rev. D 84 (2011) 034008
[arXiv:1103.5445].

