Top quark polarization measurements

Matthias Komm

Imperial College London

Overview

- top quark properties
 - coupling structure
 - spin analyzers
 - EFT & anomalous couplings
 - W helicity fractions

W helicity fraction measurements by ATLAS & CMS

Eur. Phys. J. C 77 (2017) 264 Phys. Lett. B 762 (2016) 512

- ➢ spin correlation in $t\bar{t}$ production by ATLAS ATLAS-CONF-2018-027
- single top quark polarization in t-channel by CMS JHEP 04 (2016) 073
- Wtb vertex analysis in t-channel by ATLAS JHEP 12 (2017) 017

Slide 2

Top quark properties

- top quark = heaviest particle of the SM: m_{top} = 172.4 ± 0.5 GeV > m_H > m_W [1]
 only quark which decays via electroweak interactions to on-shell W bosons
 → short life time: 1/Γ_{top} = 10⁻²⁵ s < 1/Λ_{QCD}
 - \rightarrow no hadronization, retains spin coherence
 - \rightarrow can study "free quark" properties

⁻ decays almost exclusively to bW due to CKM matrix $V_{
m tb} pprox 1$

[1] Phys. Rev. D 93, 072004 (2016)

Spin analyzers & EFT

- top quark "spin-analyzing power" [1]
 - dimensionless quantity $\alpha_X \in [-1;1]$
 - degree of polarization wrt. top decay product in top quark rest frame
 - for top antiquark: $\alpha_X(t) = -\alpha_{\bar{X}}(\bar{t})$
 - charged lepton direction ideal probe of top quark spin due to W helicity interference

Decay product X	spin-analyzing power α_X			
	LO	NLO		
ℓ^+	1.00	0.998		
ν	-0.32	-0.33		
$\overline{\mathbf{q}}'$ (down-type)	1.00	0.93		
q (up-type)	-0.32	-0.31		
b	-0.41	-0.39		
W+	0.41	0.39		

- characterize deviations from SM coupling structure
 - effective field theory approach

$$\mathcal{L}^{\text{eff}} = \mathcal{L}_{(4)}^{\text{SM}} + \frac{1}{\Lambda} \sum_{i} c_{i}^{(5)} O_{i}^{(5)} + \frac{1}{\Lambda^{2}} \sum_{i} c_{i}^{(6)} O_{i}^{(6)} + \mathcal{O}\left(\frac{O^{(7)}}{\Lambda^{3}}\right)$$

recast some dim.-6 effective operators into anomalous Wtb couplings

$$\begin{aligned} \mathcal{L}_{Wtb}^{eff} &= -\frac{g}{\sqrt{2}} \bar{b} \gamma^{\mu} \left[\begin{array}{c} V_{L} P_{L} \\ \textbf{SM} \end{array} \right] + V_{R} P_{R} tW_{\mu}^{-} \\ &- \frac{g}{\sqrt{2}} \bar{b} \frac{i \sigma^{\mu\nu} q_{\nu}}{m_{W}} \left(g_{L} P_{L} + g_{R} P_{R} \right) tW_{\mu}^{-} + \text{h.c.} \end{aligned}$$

anomalous vector- and tensor-like couplings (in SM $V_{\rm L}=V_{\rm tb}, V_{\rm R}=g_{\rm L}=g_{\rm R}=0$)

- → spin-analyzing powers can be parametrized as $\alpha_X(V_L, V_R, g_L, g_R)$
- → note: for single top production 4-fermion operator also important (missing here)

^[1] Nucl.Phys. B840 349-378, 2010

W boson helicity fractions

approximate W boson spin with reversed top quark direction in W boson rest frame

 $1/\Gamma \times d\Gamma/d\cos\theta_{\rm M}^{*}$

helicity fractions

 $\frac{\mathrm{d}\Gamma}{\Gamma \cdot \mathrm{d}\cos\theta_{\mathrm{W}}^{\star}} = \frac{3}{8} \left(1 - \cos\theta_{\mathrm{W}}^{\star}\right)^2 F_{\mathrm{L}} + \frac{3}{8} \left(1 + \cos\theta_{\mathrm{W}}^{\star}\right)^2 F_{\mathrm{R}} + \frac{3}{4}\sin^2\theta_{\mathrm{W}}^{\star} F_{\mathrm{0}}$

- normalized as: $F_L + F_R + F_0 = 1$
- SM NNLO predictions [1]

 $F_L = 0.687, \ F_0 = 0.311, \ F_R = 0.002$

- can be measured in any top quark production process!
- $-t\bar{t}$ ideal since low background & high stat.
- single top t-channel also possible
- overall analysis strategies very similar across process/experiment

[1] Phys. Rev. D 81, 111503

Typical analysis strategy

 \blacktriangleright event selection targeting semileptonic $t\bar{t}$ decay

- 1 lepton (electron or muon)
- at least 4 jet; 2 are b-tagged
- missing transverse energy

kinematic fit

- utilize W boson & top quark mass constraints
- → estimate unknown p_z component of neutrino from E_T^{miss}
- ightarrow find jet-quark assignment for calculating $\cos \theta_{\mathrm{W}}^{\star}$

create 3 templates from SM sample

event weight based on angle at generator level

$$\frac{\frac{3}{8}F_{\rm L}(1-\cos\theta_{\rm gen}^{*})^{2}+\frac{3}{4}F_{0}\sin^{2}\theta_{\rm gen}^{*}+\frac{3}{8}F_{\rm R}(1+\cos\theta_{\rm gen}^{*})^{2}}{\frac{3}{8}F_{\rm L}^{\rm SM}(1-\cos\theta_{\rm gen}^{*})^{2}+\frac{3}{4}F_{0}^{\rm SM}\sin^{2}\theta_{\rm gen}^{*}+\frac{3}{8}F_{\rm R}^{\rm SM}(1+\cos\theta_{\rm gen}^{*})^{2}}$$

 most backgrounds are unaffected by weights except single top quark production ATLAS, Eur. Phys. J. C 77 (2017) 264 CMS, Phys. Lett. B 762 (2016) 512

Slide 6

Results

Slide 7

measure fractions through template-based ML fit to reconstructed helicity angle

can also reconstruct angle from $t \to bq\bar{q}'$; but only $|\cos\theta_W^{\star}|$ since down-type quark cannot be distinguished from up-type quark ($\alpha_u \neq \alpha_d$)

F limits on anomalous tensor-like left- and right-handed couplings ($V_{
m L}=1,V_{
m R}=0$)

Spin correlation in tt production

no net polarization of top quarks in pair production ...

... BUT, top quark spins are correlated!

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos\theta_X \, d\cos\theta_{\bar{X}'}} = \frac{1}{4} \left(1 + C \, \alpha_X \alpha_{\bar{X}'} \cos\theta_X \cos\theta_{\bar{X}'} \right)$ $C \equiv \frac{\sigma(t_R \bar{t}_R) + \sigma(t_L \bar{t}_L) - \sigma(t_R \bar{t}_L) - \sigma(t_L \bar{t}_R)}{\sigma(t_R \bar{t}_R) + \sigma(t_L \bar{t}_L) + \sigma(t_R \bar{t}_L) + \sigma(t_L \bar{t}_R)}$

difference in angles

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi_{X\bar{X}'}} = \frac{1}{2} (1 + D\,\alpha_X \alpha_{\bar{X}'} \cos\varphi_{X\bar{X}'})$

NLO SM prediction [1]

 $C = 0.326 \pm 0.012, D = -0.237 \pm 0.07$

- spin correlation depend on $m_{tar{t}}$
- overall experimentally challenging since event needs to be fully reconstructed and jets/leptons correctly assigned to the corresponding top quark
- → proposal: $\Delta \phi_{\ell^+\ell^-}$ in lab frame [2]
 - reconstruction of $t\overline{t}$ system not required
 - less affected by smearing/finite resolution of detector & reconstruction

[1] Nucl.Phys. B690 81-137, 2004 [2] Phys.Rev.D81:074024,2010

M. Komm - Top quark polarization measurements

Recent ATLAS measurement

event selection

- 1 muon & 1 electron of opposite charge
- 2 jets of which at least 1 is b-tagged
- missing transverse energy
- analysis strategy
 - unfold reconstructed angle to parton/particle level (later more) using iterative Bayesian D'Agostini unfolding method [1]

$$\frac{\mathrm{d}\sigma_{t\bar{t}}}{\mathrm{d}X^{i}} = \frac{1}{\mathcal{L} \cdot \Delta X^{i} \cdot \epsilon_{\mathrm{eff}}^{i}} \cdot \sum_{j} R_{ij}^{-1} \cdot f_{\mathrm{acc}}^{j} \cdot (N_{\mathrm{obs}}^{j} - N_{\mathrm{bkg}}^{j})$$

extracting degree of correlation through template-based fit: $n_i = f_{SM} \cdot n_{spin} + (1 - f_{SM}) \cdot n_{nospin}$

results

Region	$f_{\rm SM}$
$m_{t\bar{t}} < 450 \text{ GeV}$	$1.11 \pm 0.04 \pm 0.13$
$450 < m_{t\bar{t}} < 550 \text{ GeV}$	$1.17 \pm 0.09 \pm 0.14$
$550 < m_{t\bar{t}} < 800 \text{ GeV}$	$1.60 \pm 0.24 \pm 0.35$
$m_{t\bar{t}} > 800 \text{ GeV}$	$2.2\pm1.8\pm2.3$
inclusive	$1.250 \pm 0.026 \pm 0.063$
	significance: 3.2σ
[1] Nucl.Instr.Meth. A362 (1995) 487-498	

ATLAS-CONF-2018-027

M. Komm - Top quark polarization measurements

Slide 9

Polarization in single top production

Wtb coupling structure in t-channel

- → in SM, top quark spin aligned with spectator quark q'
- in addition to anomalous
 Wtb couplings 4-fermion
 operator can also contribute
 to production side

Slide 10

observable: spin asymmetry (sensitive to polarization)

Spin asymmetry by CMS

event selection

- 1 muon, 2 jets with one b-tag, missing transverse energy
- only ~10% of selected events from t-channel single top production
- large background from W+jets, multijet, & $t\bar{t}$
 - \rightarrow use MVA to define signal-enriched phase space
- analysis strategy
 - ⁻ 1st BDT for rejecting multijet events
 - ⁻ 2nd BDT for rejecting remaining backgrounds from signal
 - training observables need to be carefully chosen to be uncorrelated wrt. polarization angle; otherwise result may be biased towards SM expectation
 - neutrino p_z reconstructed from lepton momentum & E_T^{miss} using W boson mass constraint
 - perform template-based fit to discriminants for estimating background contributions
 - apply successive selection on BDT discriminants \rightarrow signal-enriched phase space (S/B=~1)

Intermezzo: Unfolding

general problem

- given a reconstructed distribution (e.g. $\cos \theta_{\ell}^{\star}$), how to compare to theoretical predictions?
- problem can be modeled as

$$\underbrace{f(y)}_{\text{reco.}} = \int \underbrace{A(y)\epsilon(y)R(y,x)}_{\text{detector}} \cdot \underbrace{g(x)}_{\text{true}} dx$$

- quantized as histogram: $\vec{y} = \widetilde{\mathcal{R}} \cdot \vec{x}$, $\widetilde{\mathcal{R}} = \mathcal{A} \cdot \mathcal{E} \cdot \mathcal{R}$
- simple inversion of response matrix

$$\vec{x} = \left(\tilde{\mathcal{R}}\right)^{-1} \vec{y} = \left(\mathcal{U} \cdot \underbrace{\mathcal{S}}_{\text{diagonal}} \cdot \mathcal{V}\right)^{-1} \vec{y} = \mathcal{V}^{-1} \cdot \left(\begin{array}{cc} \frac{1}{s_{11}} & 0\\ 0 & \frac{1}{s_{nn}} \end{array}\right) \cdot \mathcal{U}^{-1} \vec{y}$$

 \rightarrow statistical fluctuations are amplified if s_{ii} are small

regularized unfolding (aka "TUnfold" method) [1]
 rewrite unfolding as minimization problem

$$\chi^2 = (\vec{y} - \tilde{\mathcal{R}} \, \vec{x})^T \mathcal{V}^{-1} (\vec{y} - \tilde{\mathcal{R}} \, \vec{x}) + \Re_1 + \Re_2 \quad \text{penalty terms}$$

suppress oscillating solutions: $\Re_1 = \tau^2 \vec{x}^T \mathcal{L}^T \mathcal{L} \vec{x}$ 2nd derivatives

- \rightarrow regularization strength τ needs to be optimized
- → typically: optimize for minimal correlations between bins

⁻ match overall selection efficiency: $\Re_2 = \lambda \Big(\sum y_i - \vec{\epsilon} \cdot \vec{x}\Big)$

detector acceptance, efficiency & resolution "known" from simulation

[1] JINST 7 (2012) T10003

Spin asymmetry: Results

unfolded distributions of polarization angle at parton level

 $A_{\mu}(t+\bar{t}) = 0.26 \pm 0.03 \text{ (stat)} \pm 0.10 \text{ (syst)} = 0.26 \pm 0.11, -$

2-bin cross check w/ unregularized unfolding

 $A_{\mu}(t + \bar{t}) = 0.28 \pm 0.03 \,(\text{stat}) \pm 0.1 \,(\text{syst}) = 0.28 \pm 0.12$

within 2.0 σ

Wtb analysis in t-channel

Slide 14

- use triple angular distribution to set limits on anomalous Wtb couplings and polarization
- decompose distributions into spherical harmonics

$$\varrho(\theta, \theta^*, \phi^*; P) = \frac{1}{N} \frac{\mathrm{d}^3 N}{\mathrm{d}(\cos \theta) \mathrm{d}\Omega^*}$$

$$= \sum_{k=0}^{1} \sum_{l=0}^{2} \sum_{m=-k}^{k} a_{k,l,m} M_{k,l}^{m}(\theta, \theta^{*}, \phi^{*})$$

magnitudes a_{k,l,m} depend on generalized helicity fractions α = (f₁, f₁⁺, f₀⁺, δ₊, δ₋) & polarization P
select events with |η_{j'}| > 2, H_T > 195 GeV & top mass window → signal-enriched phase space

Wtb analysis: Results

analysis strategy

- estimate coefficients in reconstructed distributions; subtract background contributions
- translate coefficients to parton level through analytical unfolding
- derive limits on anomalous couplings and top quark polarization

Likelihood (Arbitrary units) $Im[g_R/V_L]$ کے 0.45 ATLAS Likelihood ATLAS ATLAS imes Best Fit imes Best Fit $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$ 1.2 $\sqrt{s} = 8 \text{ TeV}, 20.2 \text{ fb}^{-1}$ -- SM 0.15 √s = 8 TeV, 20.2 fb⁻ SM SM 0.4 68% CL 1σ 68% CL 0.1 0.35 95% CL 95% CL 2σ 0.3 0.8 0.05 > 0.72 (95% CL)0.25 0.6 0 × 0.2 0.4 0.15 -0.05 $\operatorname{Re}\left[g_{\mathrm{R}}/V_{\mathrm{L}}\right] \in \left[-0.12, 0.17\right]$ 0.1 0.2 -0.1 $\text{Im}\left[q_{\rm B}/V_{\rm L}\right] \in \left[-0.07, 0.06\right]$ 0.05 -0.15<u>-</u>0.2 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 0 -0.15 -0.1 -0.05 0 0.05 0.1 0.2 0.15 0.3 0.4 0.5 0.6 $\text{Re}[g_/V_1]$ $|V_{D}/V_{L}|$ \rightarrow results in agreement with SM prediction

Iimits on anomalous couplings

M. Komm - Top quark polarization measurements

ATLAS, JHEP 12 (2017) 017

Slide 15

Conclusion

top quark properties

- V-A coupling structure dictates angular distributions
- spin analyzing power α_X quotes alignment of top quark spin with decay product X
- ➢ W helicity fraction measurements by ATLAS & CMS
 ─ reweight $t\bar{t}$ SM to 3 helicity fractions F_+, F_0, F_-
 - perform template-based fit to reconstructed helicity angle

 \blacktriangleright spin correlation in $t\overline{t}$ production by ATLAS

observable $\Delta \phi_{\ell^+ \ell^-}$ in lab frame does not require full reconstruction
unfold reconstructed distribution to parton/particle level

single top quark polarization in t-channel by CMS
 polarized top quark in production wrt. spectator quark direction

- unfolded angle to parton level \rightarrow spin asymmetry: $A = \frac{1}{2} \alpha_{\ell} P_{\rm t}$

Wtb vertex analysis in t-channel by ATLAS
Triple angular analysis of polarization angles in production/decay
estimate and unfold angular moments to parton level

set limits on anomalous Wtb couplings & polarization

Backup

M. Komm - Top quark polarization measurements

W helicity measurement

Uncertainty	Le	eptonic, ≥2 <i>b</i> -tags		Hadronic, $1 + \ge 2 b$ -tags		
	F_0	$F_{\rm L}$	F_{R}	F_0	$F_{\rm L}$	$F_{\mathbf{R}}$
	Reconstructed objects					
Electron	+0.0028	+0.0018	+0.0011	+0.0025	+0.0028	+0.0051
	-0.0030	-0.0020	-0.0011	-0.0021	-0.0038	-0.0058
Muon	+0.0024	+0.0013	+0.0010	+0.0026	+0.0046	+0.0072
Muon	-0.0029	-0.0015	-0.0015	-0.0037	-0.0035	-0.0072
Jet energy scale	+0.0063	+0.0028	+0.0037	+0.0069	+0.012	+0.014
	-0.0033	-0.0025	-0.0014	-0.0070	-0.008	-0.005
let energy resolution	+0.0062	+0.0048	+0.0072	F_0 ted objects +0.0025 -0.0021 +0.0026 -0.0037 +0.0069 -0.0070 +0.027 -0.031 +0.009 +0.008 -0.0031 +0.008 -0.0010 ±0.0015 ±0.015 ±0.016 ±0.018 ±0.0010 ±0.028 mcertainty ±0.0076	+0.033	+0.057
set energy resolution	-0.0059	-0.0018	-0.0067	-0.031	-0.041	-0.071
let vertex fraction	+0.0036	+0.0019	+0.0017	$\begin{array}{c cccc} 017 & +0.013 \\ 006 & -0.009 \\ 002 & +0.0008 \end{array}$	+0.0012	+0.011
Jet vertex fraction	-0.0017	-0.0013	-0.0006	-0.009	-0.0046	-0.005
let reconstruction efficiency	+0.0002	< 0.0001	+0.0002	+0.0008	+0.0004	+0.0011
Jet reconstruction enterency	-0.0002	< 0.0001	-0.0002	-0.0008	-0.0004	-0.0011
b-tagging	+0.0017	+0.0012	+0.0011	+0.029	+0.013	+0.034
	-0.0021	-0.0013	-0.0012	-0.031	-0.014	-0.035
Sum reconstructed objects	+0.010	+0.0064	+0.0085	+0.043	+0.038	+0.069
Sum reconstructed objects	-0.008	-0.0044	-0.0072	-0.045	-0.044	-0.080
	Signal modelling					
Showering and hadronisation	±0.0019	±0.0019	± 0.0037	±0.015	±0.001	±0.014
ME event generator	±0.0025	± 0.0032	± 0.0057	±0.016	±0.024	±0.040
ISR/FSR	±0.0033	± 0.0058	± 0.0034	±0.018	±0.039	±0.057
PDF	± 0.0033	± 0.0042	± 0.0009	± 0.0010	± 0.0020	± 0.0020
Top quark mass	± 0.0017	± 0.0050	±0.0033	± 0.0033	± 0.0100	± 0.0068
Sum signal modelling	± 0.0058	± 0.0094	± 0.0082	±0.028	± 0.047	± 0.072
	Method uncertainty					
Template statistics	±0.0091	±0.0056	±0.0044	±0.0076	±0.016	±0.016
			Total un	certainty		
Tetel meters tie	+0.015	+0.013	+0.013	+0.052	+0.063	+0.100
rotal systematic	-0.014	-0.012	-0.012	-0.054	-0.067	-0.110
Stat. + bkg. norm	±0.012	±0.008	±0.006	±0.010	±0.021	±0.022

W helicity measurement

e+jets		μ+	jets	ℓ+jets	
$\pm \Delta F_0$	$\pm \Delta F_{\rm L}$	$\pm \Delta F_0$	$\pm \Delta F_{\rm L}$	$\pm \Delta F_0$	$\pm \Delta F_{\rm L}$
0.004	0.003	0.005	0.003	0.005	0.003
0.001	0.002	0.004	0.003	0.003	0.003
0.001	$< 10^{-3}$	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$
0.001	0.002	0.001	0.001	0.001	0.001
0.002	$< 10^{-3}$	0.003	0.001	0.003	0.001
0.008	0.001	0.007	0.001	0.007	0.001
0.002	$< 10^{-3}$	0.001	$< 10^{-3}$	0.001	$< 10^{-3}$
0.023	0.007	0.007	0.003	0.008	0.001
0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.001	$< 10^{-3}$
0.012	0.008	0.010 (*)	0.008 (*)	0.010	0.007
0.011	0.008 (*)	0.014	0.007 (*)	0.012	0.007
0.011 (*)	0.007 (*)	0.010	0.007	0.009	0.007
0.015	0.009	0.005	0.003	0.006	0.004
0.011	0.010	$< 10^{-3}$	0.001	$< 10^{-3}$	0.002
0.002	0.001	0.002	0.001	0.002	0.001
0.004	0.001	0.002	0.001	0.002	0.001
0.037	0.020	0.024	0.014	0.023	0.014
	e+j $\pm \Delta F_0$ 0.004 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.023 0.001 0.012 0.011 0.011 (*) 0.015 0.011 0.002 0.004 0.0037	e+jets $\pm \Delta F_0$ $\pm \Delta F_L$ 0.0040.0030.0010.0020.001<10 ⁻³ 0.0010.0020.002<10 ⁻³ 0.0030.0010.002<10 ⁻³ 0.0030.0010.002<10 ⁻³ 0.0030.0070.0110.0010.0120.0080.0110.008 (*)0.0150.0090.0110.0100.0020.0010.00370.020	$e+jets$ $\mu+j$ $\pm \Delta F_0$ $\pm \Delta F_L$ $\pm \Delta F_0$ 0.0040.0030.0050.0010.0020.0040.001<10^{-3}	$e+jets$ $\mu+jets$ $\pm \Delta F_0$ $\pm \Delta F_L$ $\pm \Delta F_0$ $\pm \Delta F_L$ 0.0040.0030.0050.0030.0010.0020.0040.0030.001<10^{-3}	$e+jets$ $\mu+jets$ $\ell+j$ $\pm \Delta F_0$ $\pm \Delta F_L$ $\pm \Delta F_0$ $\pm \Delta F_0$ 0.0040.0030.0050.0030.0050.0010.0020.0040.0030.0030.001<10 ⁻³ 0.001<10 ⁻³ 0.0010.0010.0020.0010.0010.0010.002<10 ⁻³ 0.0030.0010.0030.0080.0010.0070.0010.0070.002<10 ⁻³ 0.001<10 ⁻³ 0.0010.0230.0070.0070.0030.0080.0100.001<10 ⁻³ <10 ⁻³ 0.0010.0120.0080.010 (*)0.008 (*)0.0100.0110.008 (*)0.0140.007 (*)0.0120.0150.0090.0050.0030.0060.0110.010<10 ⁻³ 0.001<10 ⁻³ 0.0020.0010.0020.0010.0020.00370.0200.0240.0140.023

Spin correlations wrt. $m_{t\bar{t}}$

ATLAS-CONF-2018-027

Phys. Rev. D 93 (2016) 052007

Spin correlations by CMS

Spin asymmetry

	$\delta A_{\mu}(\mathrm{t})/10^{-2}$	$\delta A_{\mu}(ar{\mathrm{t}})/10^{-2}$	$\delta A_{\mu}(\mathbf{t}+\mathbf{\bar{t}})/10^{-2}$
Statistical	3.2	4.6	2.6
ML fit uncertainty	0.7	1.2	0.6
Diboson bkg. fraction	< 0.1	< 0.1	< 0.1
Z/γ^* +jets bkg. fraction	< 0.1	< 0.1	< 0.1
s-channel bkg. fraction	0.3	0.2	0.2
tW bkg. fraction	0.1	0.7	0.2
Multijet events shape	0.5	0.7	0.5
Multijet events yield	1.9	1.2	1.7
b tagging	0.7	1.2	0.9
Mistagging	< 0.1	0.1	< 0.1
Jet energy resolution	2.7	1.8	2.0
Jet energy scale	1.3	2.6	1.1
Unclustered $\not\!\!E_{\mathrm{T}}$	1.1	3.3	1.3
Pileup	0.3	0.2	0.2
Lepton identification	< 0.1	< 0.1	< 0.1
Lepton isolation	< 0.1	< 0.1	< 0.1
Muon trigger efficiency	< 0.1	< 0.1	< 0.1
Top quark $p_{\rm T}$ reweighting	0.3	0.3	0.3
W+jets W boson $p_{\rm T}$ reweighting	0.1	0.1	0.1
W+jets heavy-flavour fraction	4.7	6.2	5.3
W+jets light-flavour fraction	< 0.1	< 0.1	0.1
W+jets $\cos \theta_{\mu}^{*}$ reweighting	2.9	3.4	3.1
Unfolding bias	2.5	4.2	3.1
Generator model	1.6	3.5	0.3
Top quark mass	1.9	2.9	1.8
PDF	0.9	1.6	1.2
<i>t</i> -channel renorm./fact. scales	0.2	0.2	0.2
tī renorm./fact. scales	2.2	3.4	2.7
tt ME/PS matching	2.2	0.5	1.6
W+jets renorm./fact. scales	3.7	4.6	4.0
W+jets ME/PS matching	3.8	3.0	3.4
Limited MC events	2.1	3.2	1.8
Total uncertainty	10.5	13.8	10.5

Wtb analysis

	Helicity parameters		Coupling ratios	
Source	$\sigma(f_1)$	$\sigma(\delta_{-})/\pi$	$\sigma({\rm Re}\left[g_{\rm R}/V_{\rm L}\right])$	$\sigma(\mathrm{Im}\left[g_{\mathrm{R}}/V_{\mathrm{L}}\right])$
Statistical	0.022	0.013	0.030	0.027
Jets	0.029	0.007	0.039	0.009
Leptons	0.014	0.002	0.017	< 0.001
$E_{\mathrm{T}}^{\mathrm{miss}}$	< 0.001	< 0.001	< 0.001	< 0.001
Generator	0.027	0.006	0.030	0.010
Parton shower and hadronisation	0.004	0.003	< 0.001	0.003
PDF variations	0.008	0.004	< 0.001	< 0.001
Background normalisation	< 0.001	< 0.001	< 0.001	< 0.001
Multijet normalisation	< 0.001	< 0.001	< 0.001	< 0.001
W+jets shape	0.015	0.005	0.007	0.009
Luminosity	< 0.001	< 0.001	< 0.001	< 0.001
MC sample sizes	0.009	0.006	< 0.001	0.013
Other	< 0.001	< 0.001	< 0.001	< 0.001
Total systematic uncertainty	0.044	0.010	0.061	0.017
Total	0.049	0.017	0.068	0.032

LO Spin analyzing power

dependence on anomalous Wtb couplings

$$a_{\ell^{+}} = \left[|V_{L}|^{2} - |V_{R}|^{2} \right] \left(1 + x_{W}^{2} - 2x_{W}^{4} \right) + 2 \left[|g_{L}|^{2} - |g_{R}|^{2} \right] \left(1 - \frac{x_{W}^{2}}{2} - \frac{x_{W}^{4}}{2} \right) - 12x_{W}^{2}x_{b} \operatorname{Re} \left[V_{L}V_{R}^{*} + g_{L}g_{R}^{*} \right] - 6x_{W} \operatorname{Re} \left[V_{L}g_{R}^{*} + V_{R}g_{L}^{*} \right] \left(1 - x_{W}^{2} \right) + 6x_{W}x_{b} \operatorname{Re} \left[V_{L}g_{L}^{*} - V_{R}g_{R}^{*} \right] \left(1 + x_{W}^{2} \right) + 12x_{W}^{2} \left[|V_{R}|^{2} - |g_{R}|^{2} \right] + 6 \frac{M_{W}}{|\vec{q}|}x_{W} \log \frac{E_{W} + |\vec{q}|}{E_{W} - |\vec{q}|} \left[|g_{R}|^{2} - x_{W}^{2}|V_{R}|^{2} + 2x_{W}x_{b} \operatorname{Re} V_{R}g_{R}^{*} \right] ,$$

$$a_{0} = \left[|V_{L}|^{2} + |V_{R}|^{2} \right] \left(1 + x_{W}^{2} - 2x_{W}^{4} \right) + 2 \left[|g_{L}|^{2} + |g_{R}|^{2} \right] \left(1 - \frac{x_{W}^{2}}{2} - \frac{x_{W}^{4}}{2} \right) - 12x_{W}^{2}x_{b} \operatorname{Re} \left[V_{L}V_{R}^{*} + g_{L}g_{R}^{*} \right] - 6x_{W}\operatorname{Re} \left[V_{L}g_{R}^{*} + V_{R}g_{L}^{*} \right] \left(1 - x_{W}^{2} \right) + 6x_{W}x_{b} \operatorname{Re} \left[V_{L}g_{L}^{*} + V_{R}g_{R}^{*} \right] ,$$

LO W helicity fractions

dependence on anomalous Wtb couplings

$$\Gamma_0 = \frac{g^2 |\vec{q}|}{32\pi} A_0, \qquad \Gamma_{\pm} = \frac{g^2 |\vec{q}|}{32\pi} \left(B_0 \pm 2\frac{|\vec{q}|}{m_t} B_1 \right)$$

$$\begin{aligned} A_0 &= \frac{m_t^2}{M_W^2} \left[|V_L|^2 + |V_R|^2 \right] \left(1 - x_W^2 \right) + \left[|g_L|^2 + |g_R|^2 \right] \left(1 - x_W^2 \right) \\ &- 4x_b \operatorname{Re} \left[V_L V_R^* + g_L g_R^* \right] - 2 \frac{m_t}{M_W} \operatorname{Re} \left[V_L g_R^* + V_R g_L^* \right] \left(1 - x_W^2 \right) \\ &+ 2 \frac{m_t}{M_W} x_b \operatorname{Re} \left[V_L g_L^* + V_R g_R^* \right] \left(1 + x_W^2 \right) , \end{aligned}$$

$$B_{0} = \left[|V_{L}|^{2} + |V_{R}|^{2} \right] \left(1 - x_{W}^{2} \right) + \frac{m_{t}^{2}}{M_{W}^{2}} \left[|g_{L}|^{2} + |g_{R}|^{2} \right] \left(1 - x_{W}^{2} \right)$$

$$- 4x_{b} \operatorname{Re} \left[V_{L} V_{R}^{*} + g_{L} g_{R}^{*} \right] - 2 \frac{m_{t}}{M_{W}} \operatorname{Re} \left[V_{L} g_{R}^{*} + V_{R} g_{L}^{*} \right] \left(1 - x_{W}^{2} \right)$$

$$+ 2 \frac{m_{t}}{M_{W}} x_{b} \operatorname{Re} \left[V_{L} g_{L}^{*} + V_{R} g_{R}^{*} \right] \left(1 + x_{W}^{2} \right) ,$$

$$B_{1} = -\left[|V_{L}|^{2} - |V_{R}|^{2}\right] + \frac{m_{t}^{2}}{M_{W}^{2}}\left[|g_{L}|^{2} - |g_{R}|^{2}\right] + 2\frac{m_{t}}{M_{W}}\operatorname{Re}\left[V_{L}g_{R}^{*} - V_{R}g_{L}^{*}\right] + 2\frac{m_{t}}{M_{W}}x_{b}\operatorname{Re}\left[V_{L}g_{L}^{*} - V_{R}g_{R}^{*}\right],$$

Nucl.Phys. B840 349-378, 2010

Slide 25

Wtb analysis

$$\begin{split} \varrho(\theta, \theta^*, \phi^*; P) &= \frac{1}{N} \frac{\mathrm{d}^3 N}{\mathrm{d}(\cos \theta) \mathrm{d}\Omega^*} = \frac{1}{8\pi} \Biggl\{ \frac{3}{4} \left| A_{1,\frac{1}{2}} \right|^2 (1 + P \cos \theta) (1 + \cos \theta^*)^2 \\ &\quad + \frac{3}{4} \left| A_{-1,-\frac{1}{2}} \right|^2 (1 - P \cos \theta) (1 - \cos \theta^*)^2 \\ &\quad + \frac{3}{2} \left(\left| A_{0,\frac{1}{2}} \right|^2 (1 - P \cos \theta) + \left| A_{0,-\frac{1}{2}} \right|^2 (1 + P \cos \theta) \right) \sin^2 \theta^* \\ &\quad - \frac{3\sqrt{2}}{2} P \sin \theta \sin \theta^* (1 + \cos \theta^*) \operatorname{Re} \left[e^{i\phi^*} A_{1,\frac{1}{2}} A_{0,\frac{1}{2}}^* \right] \\ &\quad - \frac{3\sqrt{2}}{2} P \sin \theta \sin \theta^* (1 - \cos \theta^*) \operatorname{Re} \left[e^{-i\phi^*} A_{-1,-\frac{1}{2}} A_{0,-\frac{1}{2}}^* \right] \Biggr\} \\ &= \sum_{k=0}^1 \sum_{l=0}^2 \sum_{m=-k}^k a_{k,l,m} M_{k,l}^m(\theta, \theta^*, \phi^*) \,, \end{split}$$