

Measurement of gauge boson polarisation in inclusive WZ events

Based on [ATLAS-CONF-2018-034], and PhD thesis of Angela Burger

From theory to reality ...

- First measurement of polarisation in diboson production in pp collisions
- Exercise and develop methods first in inclusive VV production
- WZ final state (fully leptonic): a good compromise between background, reconstruction problems and statistics
- A precursor for VVjj
- An new degree of freedom for NP searches

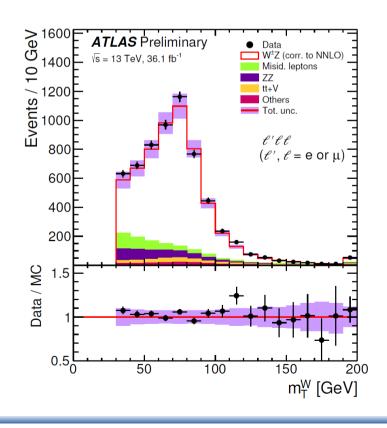
Inclusive WZ production

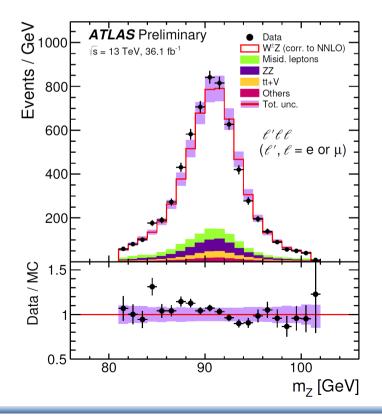
Analysis based on 36 fb⁻¹ (2015-2016) of data

Definition of phase spaces

Variable	Total	Fiducial and aTGC
Lepton η		< 2.5
p_{T} of $\ell_{\mathrm{Z}}, p_{\mathrm{T}}$ of ℓ_{W} [GeV]	_	> 15, > 20
m_Z range [GeV]	66 – 116	$ m_Z - m_Z^{\rm PDG} < 10$
m_{T}^{W} [GeV]	_	> 30
$\Delta R(\ell_Z^-, \ell_Z^+), \Delta R(\ell_Z, \ell_W)$	_	> 0.2, > 0.3

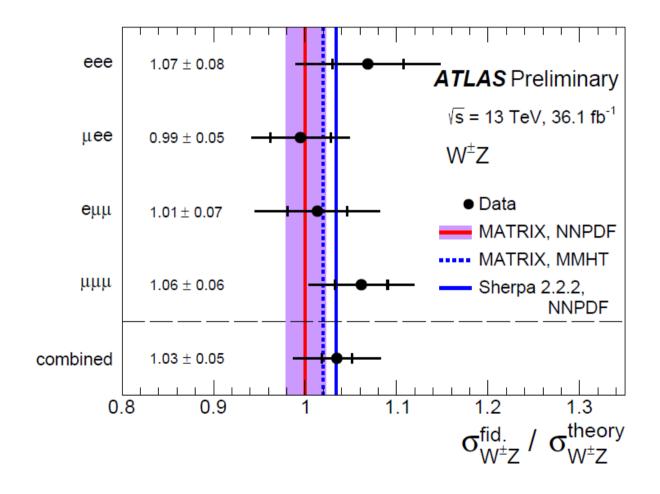
- Main analysis caracteristics
 - → Select events with only 3 leptons
 - → Optimised lepton isolation criteria to reduce the reducible background
 - → no cut on E_T^{miss}, replaced by a cut on m_T^W
 - Data-driven estimate of reducible backgrounds (matrix method)
 - → Powheg+Pythia signal MC, rescaled to NNLO (MATRIX)


Selected WZ candidate events


Channel	eee	μее	еµµ	μμμ	All
Data	1279	1281	1671	1929	6160
Total Expected	1221 ± 7	1281 ± 6	1653 ± 8	1830 ± 7	5986 ± 14
WZ	922 ± 5	1077 ± 6	1256 ± 6	1523 ± 7	4778 ± 12
Misid. leptons	138 ± 5	34 ± 2	193 ± 5	71 ± 2	436 ± 8
ZZ	86 ± 1	89 ± 1	117 ± 1	135 ± 1	426 ± 3
$t\bar{t}+V$	50.0 ± 0.7	54 ± 0.7	56.1 ± 0.7	63.8 ± 0.8	225 ± 1
tZ	23.1 ± 0.4	24.8 ± 0.4	28.8 ± 0.4	33.5 ± 0.5	110 ± 1
VVV	2.5 ± 0.1	2.8 ± 0.1	3.2 ± 0.1	3.6 ± 0.1	12.0 ± 0.2

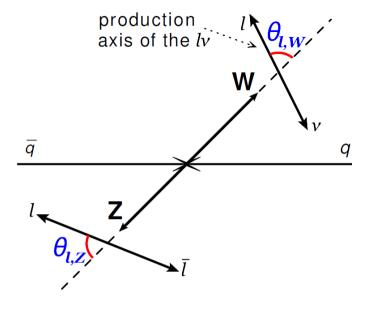
80% of WZ signal

7.3% reducible bkg. (fakes)


7.1% irrreducible bkg. (ZZ)

Integrated fiducial cross section

Analysis used to measure integrated fiducial WZ cross section



➤ Total experimental precision of 4.6%

Polarisation observables

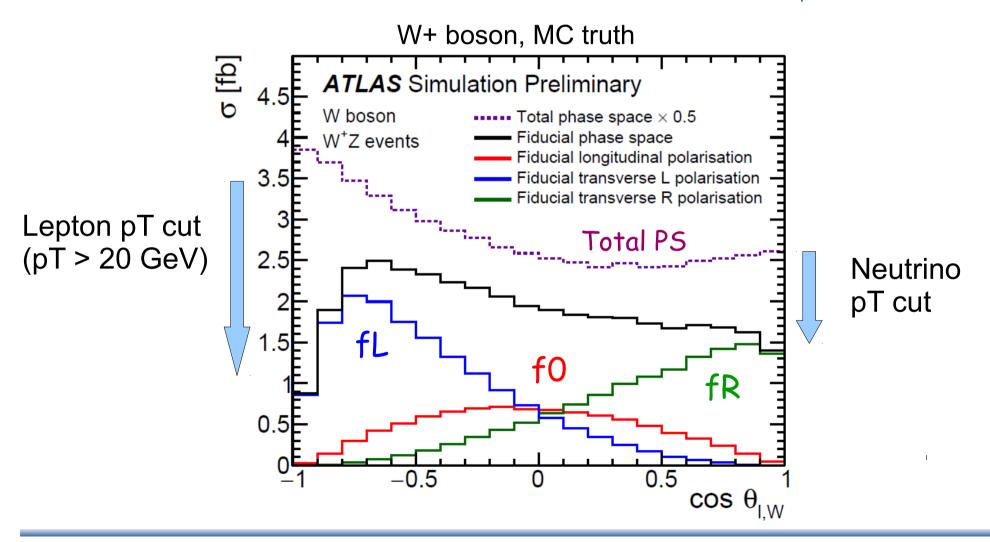
- Decay angles of leptons
- $\cos \theta_{LW(Z)}$ = lepton decay angle in W(Z) rest frame wrt. th W(Z) direction in the WZ c.m.s.
 - Helicity frame used
 - → In the WZ rest frame
 - Helicity fractions depends on the frame

W boson:

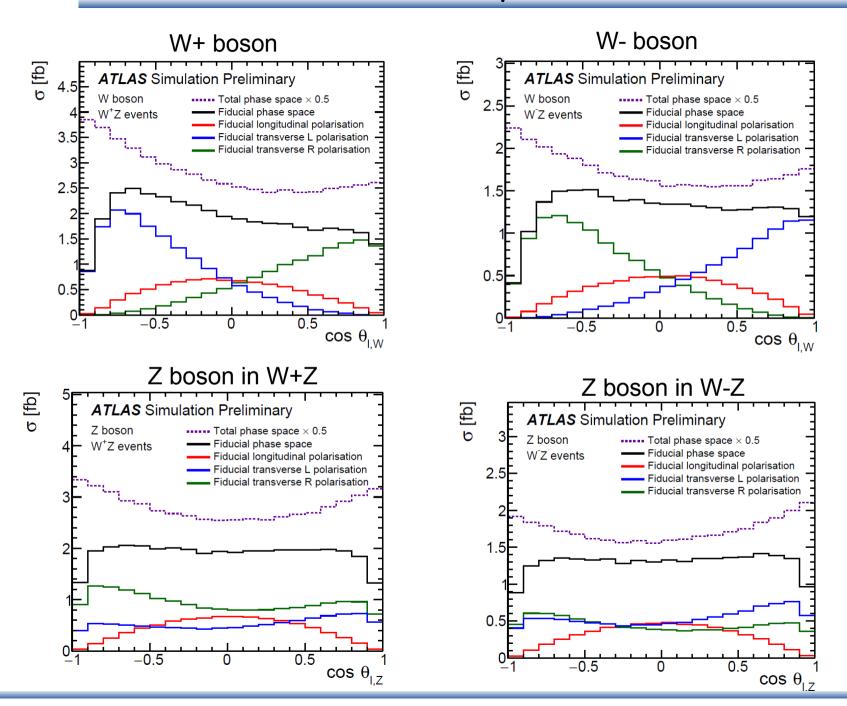
$$\frac{1}{\sigma_{W^{\pm}Z}} \frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,W}} = \frac{3}{8} f_{L} (1 \mp \cos\theta_{\ell,W})^{2} + \frac{3}{8} f_{R} (1 \pm \cos\theta_{\ell,W})^{2} + \frac{3}{4} f_{0} \sin^{2}\theta_{\ell,W}$$

Z boson:

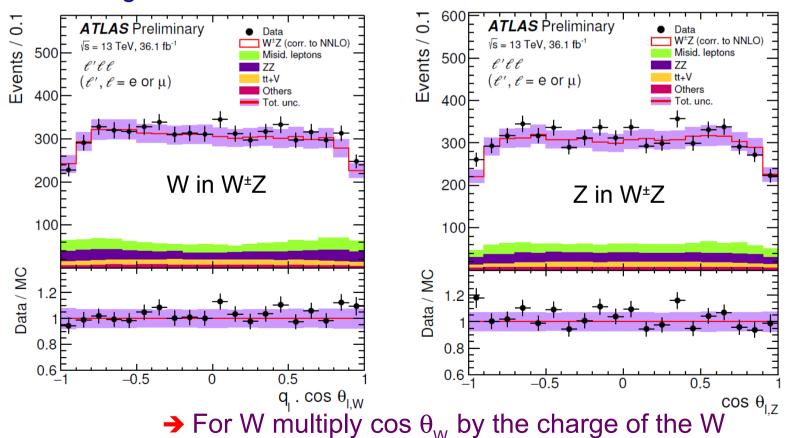
$$\frac{1}{\sigma_{W^{\pm}Z}} \frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,Z}} = \frac{3}{8} f_{L} (1 + 2\alpha\cos\theta_{\ell,Z} + \cos^{2}\theta_{\ell,Z}) + \frac{3}{8} f_{R} (1 + \cos^{2}\theta_{\ell,Z} - 2\alpha\cos\theta_{\ell,Z}) + \frac{3}{4} f_{0} \sin^{2}\theta_{\ell,Z}$$


$$\alpha = \frac{2c_{v}c_{a}}{c_{v}^{2} + c_{a}^{2}} \qquad c_{v} = -\frac{1}{2} + 2\sin^{2}\theta_{W}^{\text{eff}}$$

- Effective Weinberg angle used $\sin^2 \theta_{\rm W}^{\rm eff} = 0.23152$ (value affects
 - **Z**-polarisation)
- Constraint: $f_0 + f_L + f_R = 1$


From total to fiducial Phase Space

- Previous formulae valid only in a total phase space
 - \rightarrow Shape of cos θ_{v} modified by acceptance cuts on leptons
 - Neason to avoid a cut on E_⊤^{miss}



Fiducial PS cos θ_{V} distributions

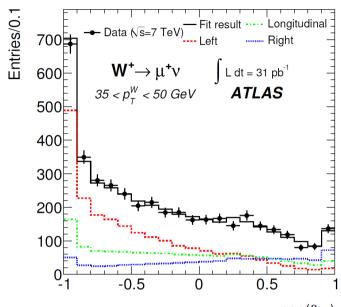
Detector-level observables

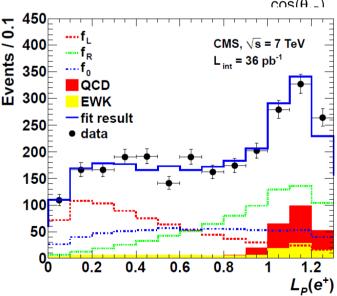
- Moving to detector level:
 - Detector resolution
 - → Reconstruction of the longitudinal momentum of the neutrino
 - Use W-mass constrain → choose solution with smaller p_z^v
 - If no real solution: real part of the complex solution with smaller magnitude

Comment on W reconstruction

- To avoid the neutrino pz reconstruction:
 - \rightarrow "Project" cos θ_{V} on the transverse plane

$$\cos \theta_{2D} = \frac{\overrightarrow{p}_{T}^{\ell*} \cdot \overrightarrow{p}_{T}^{W}}{|\overrightarrow{p}_{T}^{\ell*}| |\overrightarrow{p}_{T}^{W}|}$$


Used for single W polarisation measurement [EPJC 72(2012)2001]


→ "Lepton projection variable" Lp: projection of $\vec{p}_T(\ell)/|\vec{p}_T(W)|$ onto

$$\vec{p}_T(W)/|\vec{p}_T(W)|$$

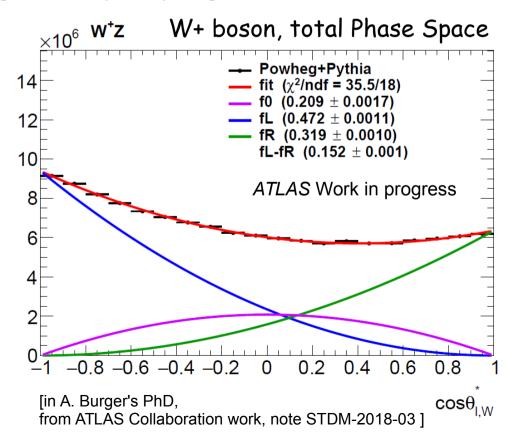
$$L_P = \frac{\vec{p}_T(\ell) \cdot \vec{p}_T(W)}{|\vec{p}_T(W)|^2}$$

[PRL 107 (2011) 021802]

Tested, but no sensitivity improvements observed

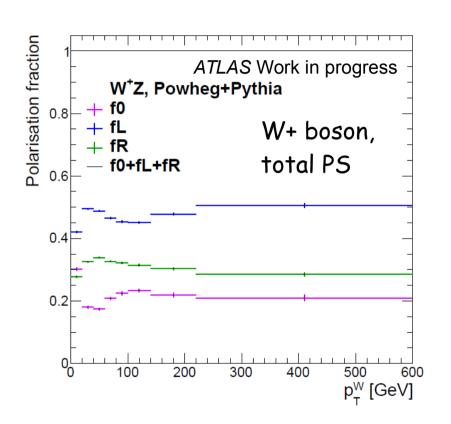
Measurement methodology

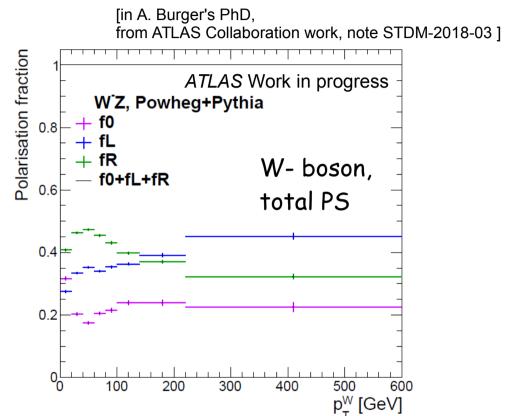
- Measure separatly W and Z polarisations
- Template fit at detector-level using MC templates for fL, fR and f0
 - → Need to generate the MC detector-level templates
- Use a binned profile-likelihood fit
- Use the constraint fL+fR+f0 = 1
 - → 3 parameters fit: f0, fL-fR and the total cross section
- Unfold to fiducial phase space and Born-level leptons
 - Correct for efficiency differences of each helicity states



Monte Carlo polarisation templates

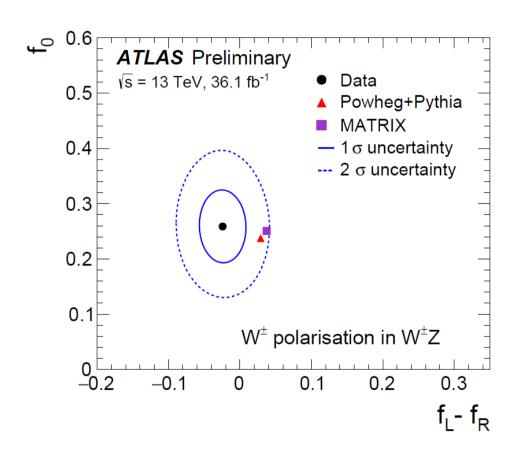
- No MC available with events of single helicity state
 - → Use standard Powheg+Pythia WZ MC and reweight it to single f0, fL and fR states
 - → Same technique as for single W and Z polarisation measurements [EPJC 72(2012)2001] and [JHEP 08(2016)159]

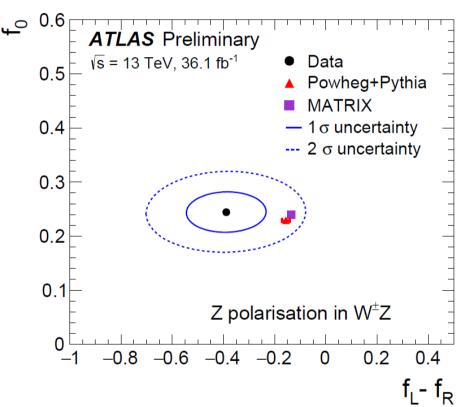

Weights


• Determine f0, fL and fR using analytical fits, in $(p_T^{\ \ \ \ }, y_V^{\ \ \ })$ bins

Monte Carlo polarisation templates

• Exemple of evolution with p_{τ}^{V} (integrated over y_{V})


Event by event weights of MC events


$$\frac{\frac{1}{\sigma_{W^{\pm}Z}}\frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,W}}\Big|_{L/0/R}}{\frac{3}{8}f_{L}^{\text{gen.}}(1\mp\cos\theta_{\ell,W})^{2}+\frac{3}{8}f_{R}^{\text{gen.}}(1\pm\cos\theta_{\ell,W})^{2}+\frac{3}{4}f_{0}^{\text{gen.}}\sin^{2}\theta_{\ell,W}} \qquad \frac{1}{\sigma_{W^{\pm}Z}}\frac{d\sigma_{W^{\pm}Z}}{d\cos\theta_{\ell,W}}\Big|_{R}^{L} = \begin{cases} \frac{3}{8}\frac{(1\mp\cos\theta_{\ell,W})^{2}}{2\sin^{2}\theta_{\ell,W}} & \frac{1}{2\sin^{2}\theta_{\ell,W}} & \frac{1}{2\cos\theta_{\ell,W}} & \frac{1}{2\sin\theta_{\ell,W}} &$$

Results of the fit

- Evidence of f0 for W boson : 4.2σ obs. (3.8 σ expected)
- Observation of f0 for Z boson : 6.5 σ obs. (6.1 σ expected)

- → Agreement with predictions (low sensitivity on fL-fR)
- → Minor impact of NNLO QCD corrections on prediction

Systematic uncertainties

-	W [±] i	W^{\pm} in $W^{\pm}Z$		$W^{\pm}Z$
	f_0	$f_{\rm L} - f_{\rm R}$	f_0	$f_{\rm L} - f_{\rm R}$
Electrons	0.0024	0.0004	0.005	0.0021
Muons	0.0013	0.0027	0.0018	0.008
Jets	0.0024	0.0010	0.0017	0.005
Pileup	0.005	0.00009	0.0014	0.005
Misid. lepton backgroun	nd 0.031	0	0.007	0.019
ZZ background	0.009	0.0004	0.0007	0.0012
Other backgrounds	0.0012	0.0005	0.0018	0.005
QCD scale	0.0008	0.0013	0.0004	0.008
PDF	0.0011	0.0009	0.00004	0
Modelling	0.004	0.007	0.0015	0.0028
Total systematics	13% 0.033	0.008	0.009	0.024
Luminosity	0.0015	0	0	0.0008
Statistics	0.06	0.032	0.04	0.15
Total	0.06	0.033	0.04	0.16
	23%		17%	

→ Dominated by data statistical uncertainties

Polarisation per W charge

Polarisation also measured for W+Z and W-Z events

	f_0		$f_L - f_R$		
	Data	Prediction	Data	Prediction	
W^+ in W^+Z	0.26 ± 0.08	0.233 ± 0.004	-0.02 ± 0.04	0.083 ± 0.004	
W^- in W^-Z	0.32 ± 0.09	0.245 ± 0.005	-0.05 ± 0.05	-0.061 ± 0.006	
W^{\pm} in $W^{\pm}Z$	0.26 ± 0.06	0.2376 ± 0.0031	-0.024 ± 0.033	0.0249 ± 0.0022	
Z in W^+Z	0.27 ± 0.05	0.225 ± 0.004	-0.32 ± 0.21	-0.269 ± 0.021	
Z in W^-Z	0.21 ± 0.06	0.235 ± 0.005	-0.46 ± 0.25	0.034 ± 0.023	
Z in $W^{\pm}Z$	0.24 ± 0.04	0.2294 ± 0.0033	-0.39 ± 0.16	-0.147 ± 0.016	

Discussion of NLO EW corrections effects

A recent calculation for WZ from Julien BAGLIO¹, <u>LE Duc Ninh</u>²

Windows on the universe, Quy Nhon, 7 August 2018

[here]

Method	$f_L^{W^+}$	$f_0^{W^+}$	$f_R^{W^+}$	f_L^Z	f_0^Z	f_R^Z
HE FULL-LO	$0.355(2)_{-2}^{+2}$	$0.513(1)_{-3}^{+3}$	$0.132(2)^{+0.8}_{-0.7}$	$0.222(2)^{+0.8}_{-0.2}$	$0.517(2)^{+1}_{-0.9}$	$0.261(3)^{+1}_{-2}$
HE FULL-NLOQCD	$0.320(3)_{-3}^{+2}$	$0.508(3)^{+2}_{-2}$	$0.172(2)_{-3}^{+4}$	$0.255(8)^{+5}_{-1}$	$0.493(2)_{-3}^{+2}$	$0.252(8)_{-3}^{+0}$
HE FULL-NLOEW	0.355	0.512	0.133	0.217	0.518	0.266

[Note: helicity frame, but differente definition using not the WZ cms. but the laboratory]

- A Tests also on-going using NLO-EW corrections from Benedikt Biedermann, Ansgar Denner, Lars Hofer [JHEP10(2017)043]
 - \rightarrow Effects on shape of cos θ_{V} distributions seems negligible
 - ▲ All still understudy, more work needed

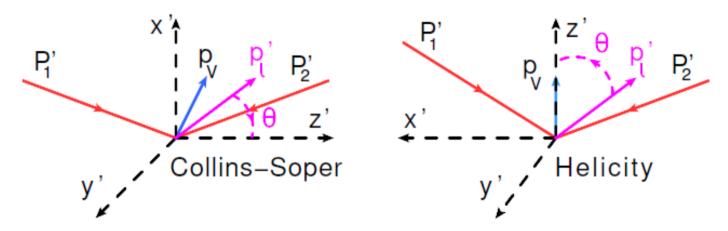
Summary and prospects

- A first "full scale" exercise of VV polarisation measurement
- Agreement with predictions (within uncertainties)

Future:

- Analyse full run 2 data (> 3x more statistics)
- Improvements:
 - \rightarrow A better observable than cos θ_{v} : combination of observables ? with help of NN or BDT ?
 - → Jet observables ?
 - Study boson correlations
 - → Try to apply to WZjj

Additional informations


Taken from: Julien BAGLIO¹, LE Duc Ninh²

Windows on the universe, Quy Nhon, 7 August 2018

Polarization observables in two frames

Convention: used by ATLAS and CMS, $I = \mu^-$ for Z, in the V rest frame,

$$\begin{split} \frac{d\sigma}{\sigma d\cos\theta d\phi} &= \frac{3}{16\pi} \Big[(1+\cos^2\theta) + A_0 \frac{1}{2} (1-3\cos^2\theta) + A_1 \sin(2\theta)\cos\phi \\ &+ A_2 \frac{1}{2} \sin^2\theta \cos(2\phi) + A_3 \sin\theta\cos\phi + A_4 \cos\theta \\ &+ A_5 \sin^2\theta \sin(2\phi) + A_6 \sin(2\theta)\sin\phi + A_7 \sin\theta\sin\phi \Big], \end{split}$$

- Collins-Soper frame [CS, 1977]: z' is the bisector of \vec{P}'_1 and $-\vec{P}'_2$, points into the hemisphere of \vec{p}_V (in the lab frame).
- ► Helicity frame [Bern et al, arXiv:1103.5445]: $z' = \vec{p}_V$.
- ▶ Integrating over ϕ gives the above polarization fractions $f_{L,0,R}$.

Le Duc Ninh (IFIRSE, Quy Nhon)

Polarisation per W charge