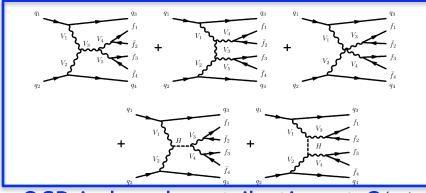
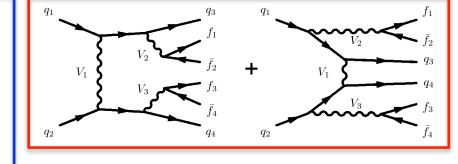


Semi-leptonic VBS measurements

VBS Polarization Workshop LLR October, 2018


Aram Apyan

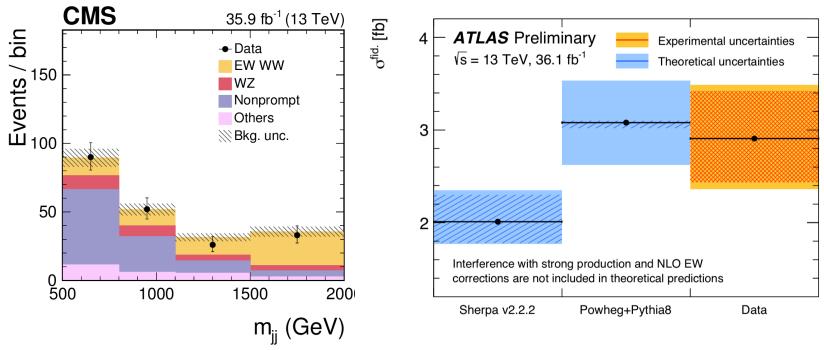
Recent LHC results


- Recent Run 2 ATLAS and CMS VBS results at \sqrt{s} of 13 TeV
- Using datasets with integrated luminosity of 36 fb⁻¹
 - Measurements of EW production of W±W± by ATLAS and CMS
 - ATLAS-CONF-2018-030, PRL. 120, 081801 (2018)
 - Evidence by ATLAS and CMS in Run-2
 - Events with two same sign leptons in association with two jets
 - Measurements of EW production of W±Z by ATLAS and CMS
 - ATLAS-CONF-2018-033, CMS-PAS-SMP-18-001
 - Events with three leptons in association with two jets
 - Measurement of EW ZZ production by CMS
 - Phys. Lett. B 774 (2017) 682
 - Events with four leptons in association with two jets


Vector boson scattering

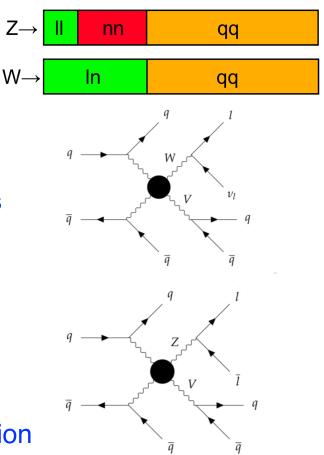
- VVjj process cross section at leading-order (LO):
 - Pure EW contribution at $O(\alpha^6)$
 - VBS and irreducible EW (separately not gauge-invariant)

• QCD induced contribution at $O(\alpha^4 \alpha_s^2)$

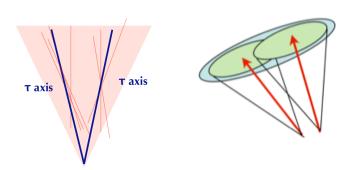


• Interference of the EW and QCD amplitudes contributes at $O(\alpha^5 \alpha_s)$

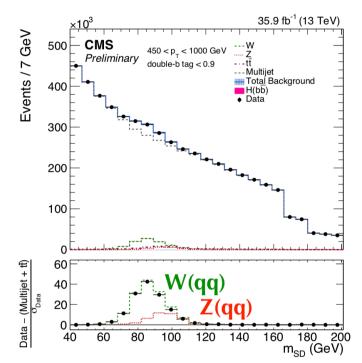
• O(+1%) in typical fiducial region


Recent LHC results

- Recent Run 2 ATLAS and CMS VBS results at \sqrt{s} of 13 TeV
- Measurements of $W^{\pm}W^{\pm}$ and WZ SM EW production fiducial cross sections
 - Need for reliable predictions: higher orders, parton showers, approximations, etc.


Semileptonic final states

- Study of the semileptonic WV and ZV VBS processes
 - Benefit from the large hadronic branching fraction of W or Z boson
 - Ability to fully reconstruct the WV mass
 - Up to quadratic ambiguity
 - See previous talk
- W±Vjj includes contributions from:
 - W±W±jj, W±Wjj, and W±Zjj VBS processes
- ZVjj also includes contributions from ZZjj
- W/Z in VBS events can be highly boosted
- Main challenges of the WVjj channel:
 - Large backgrounds from W+jets and top
 - Difficult to separate WW and WZ production



Boosted W/Z

- W/Z in VBS events can be highly boosted
- Particular interest for anomalous couplings
- Influence of higher order operators most prominent at:
 - Large boson pT
 - Large di-boson invariant mass
- Large radius V-jets
- V-jet tagging via substructure techniques

- Before computing the mass
 - Remove pileup and soft wide angle radiation

 $\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{i} \sum_{j}$

PRL 120 (2018) 071802

Experimental challenge: boost

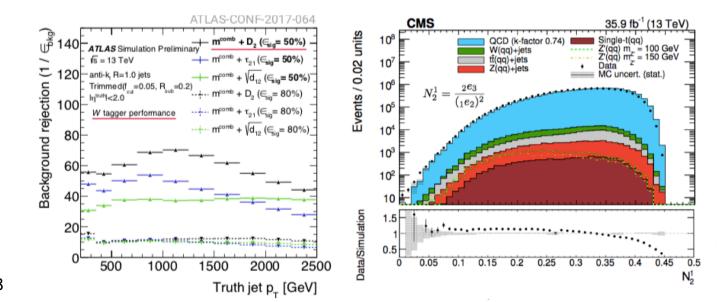
- Boosted V-tagging techniques still rapidly advancing
 - Active advances with deep neutral networks and boosted decision trees
 - Large factors in background suppression appear within reach

ECF ratio D2

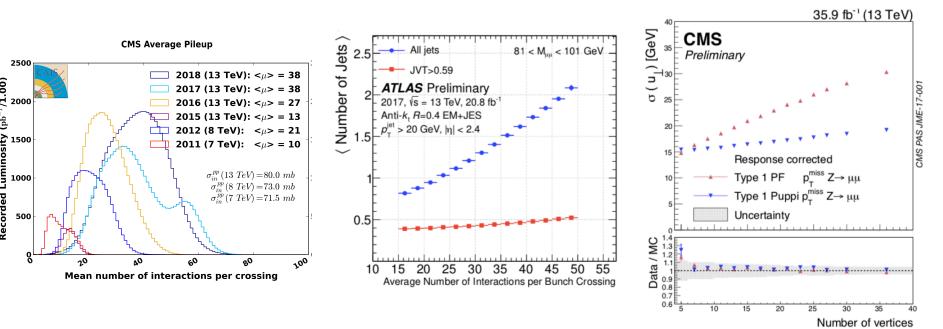
at p_T~500 GeV: ~30% W signal at ~1% mistag

n-subjetiness ratio τ_{21}

at p_T~500 GeV: ~55% W signal at ~2% mistag

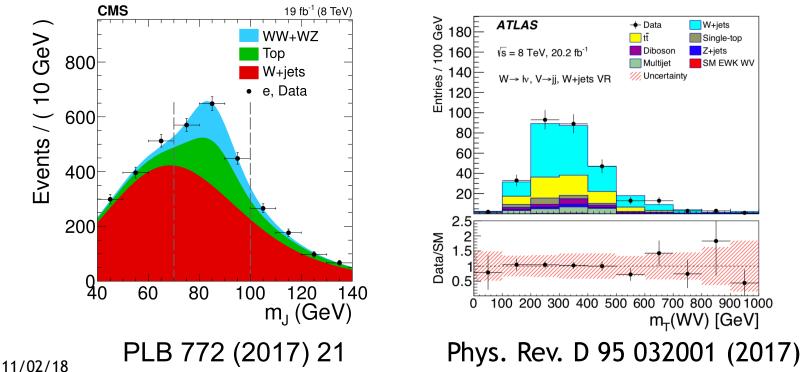

ECF ratio N_{2^1}

at $p_T{\sim}500$ GeV: ${\sim}15\%$ W signal at ${\sim}5\%$ mistag


 $N_2^1 = \frac{2e_3}{(1e_2)^2}$

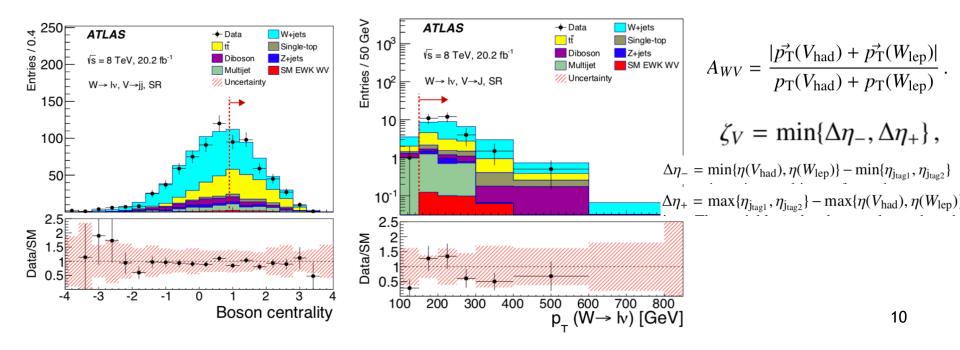
Ian Moult: BOOST16

Pileup mitigation


- LHC during 2015-2018: on average 15-40 pileup
- Pileup affects missing energy, jet substructure, lepton isolation, etc.
 - Different techniques to mitigate the effect of pileup in ATLAS and CMS
 - Examples: Jet vertex tagger in ATLAS and Puppi in CMS

• HL-LHC

Background estimation


- Large backgrounds from W+jets
 - Determine ratio fo simulated to data distributions in sideband
 - Extrapolate to signal region using transfer function (from simulation)
 - Accounts for data-MC differences in shape and normalization

- ATLAS measurement of WVjj at 8 TeV
 - Resolved and merged V-jets considered
- Leptonic W reconstructed from the neutrino solution
- Optimized for AQGC sensitivity
 - mjj>800 GeV, boson centrality, pT balance, etc. requirements

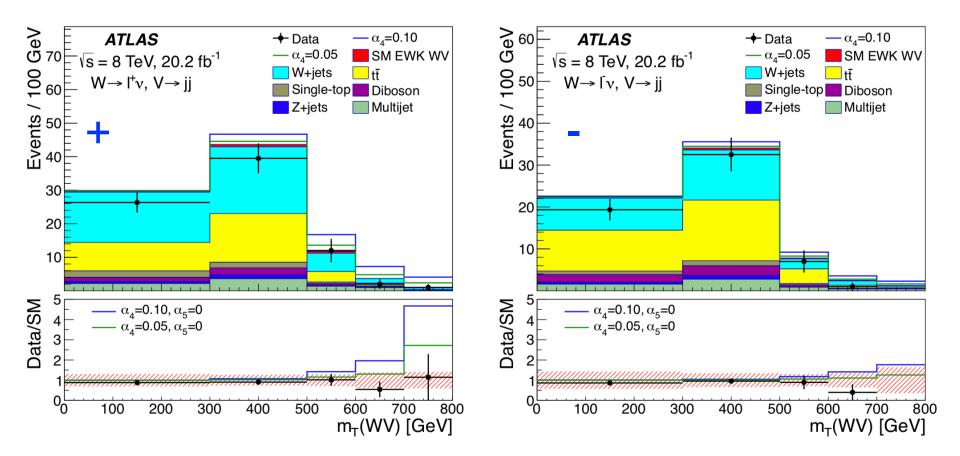
Phys. Rev. D 95 032001 (2017)

• Leptonic W reconstructed from the neutrino solution

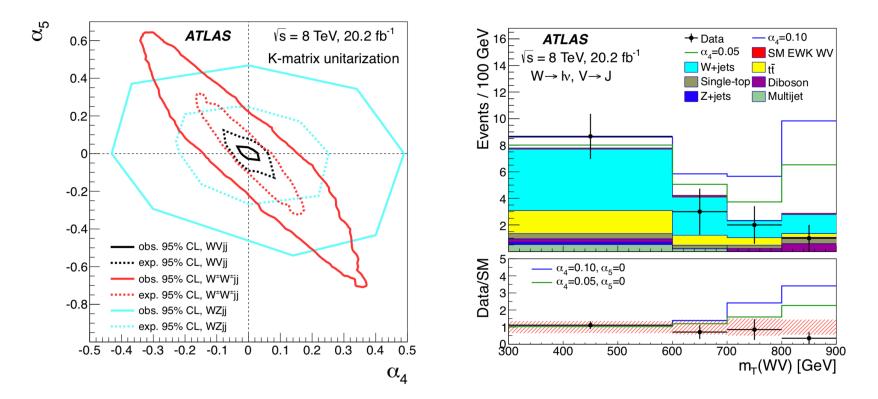
• Use transverse mass of the WV system to search for AQGC signal

 $m_{\rm T}(WV) = \sqrt{(E_{\rm T}(V_{\rm had}) + E_{\rm T}(W_{\rm lep}))^2 - (p_x(V_{\rm had}) + p_x(W_{\rm lep}))^2 - (p_y(V_{\rm had}) + p_y(W_{\rm lep}))^2}$

	Resolved	Merged channel	
	e^+ and μ^+	e^- and μ^-	e and μ
W + jets	92 ± 37	51 ± 29	19.4 ± 9.9
$t\bar{t}$	59 ± 18	63 ± 35	6.8 ± 2.8
Single-top	10.0 ± 5.6	5.5 ± 3.2	2.2 ± 1.2
Diboson	8.6 ± 5.7	10.8 ± 6.4	1.6 ± 1.2
Z + jets	4.5 ± 1.5	3.4 ± 2.4	0.58 ± 0.64
Multijet	16 ± 16	12 ± 12	1.8 ± 1.9
Total background	190 ± 53	145 ± 54	32 ± 12
EWK WV (SM)	3.66 ± 0.82	2.34 ± 0.56	0.54 ± 0.22
EWK <i>WV</i> ($\alpha_4 = 0.1, \alpha_5 = 0$)	21.0 ± 4.2	9.2 ± 1.9	15.1 ± 4.4
Data	173	131	32

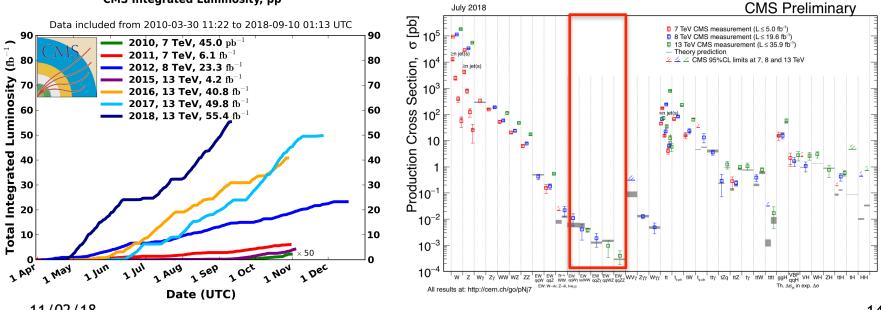

	Fractional uncertainty		
Source	Resolved	Merged	
W/Z + jets modeling	0.13	0.29	
$t\bar{t}$ modeling	0.14	0.07	
Multijet yield	0.06	0.05	
Minor background yields	0.04	0.05	
Jet reconstruction	0.21	0.17	
Other detector/luminosity	0.04	0.03	
Limited stats in MC or CR	0.02	0.06	
Total	0.29	0.36	

$$\alpha_4 \mathcal{L}_4 = \alpha_4 \operatorname{tr}[\mathbf{V}_{\mu} \mathbf{V}_{\nu}] \operatorname{tr}[\mathbf{V}^{\mu} \mathbf{V}^{\nu}],$$


$$\alpha_5 \mathcal{L}_5 = \alpha_5 \operatorname{tr}[\mathbf{V}_{\mu} \mathbf{V}^{\mu}] \operatorname{tr}[\mathbf{V}_{\nu} \mathbf{V}^{\nu}],$$

• Resolved category is split by charge

- Resolved category
 - No excess seen

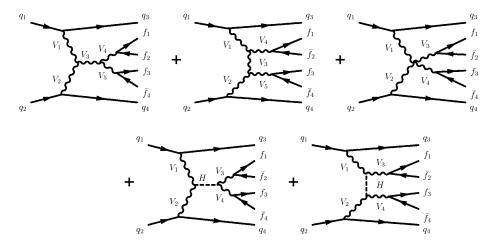


- More stringent limits than the corresponding W±W± and WZ leptonic channels
 - Boosted category improves the limits by 40%

LHC Run 2

- Measurements of VBS cross sections of O(1fb) in leptonic channels
 - Measurements are statistically limited
 - Current 13 TeV results using dataset of 36 fb⁻¹
- ATLAS and CMS have accumulated ~30 fb⁻¹ at \sqrt{s} of 7/8 TeV and ~150 fb⁻¹ at \sqrt{s} of 13 TeV
 - Semileptonic measurements at 13 TeV to come

CMS Integrated Luminosity, pp


Summary

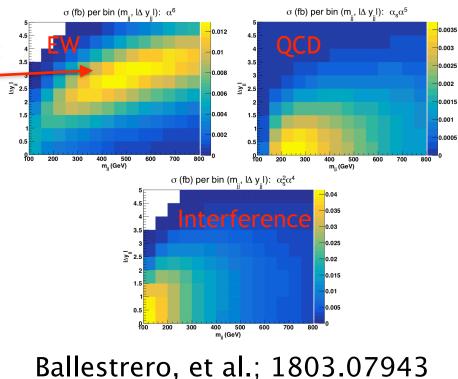
- First measurements of the VBS processes by ATLAS and CMS
 - In leptonic channels
- Many measurements yet to come with full run-2 data sample
 - Including semileptonic channels
 - Expect more than 150 fb⁻¹ by the end of the year
- Semileptonic channels not sensitive to SM EW production yet
 - But give stringent limits on AQGC
- Use of boosted jets in anomalous coupling studies

ADDITIONAL MATERIAL

Vector boson scattering

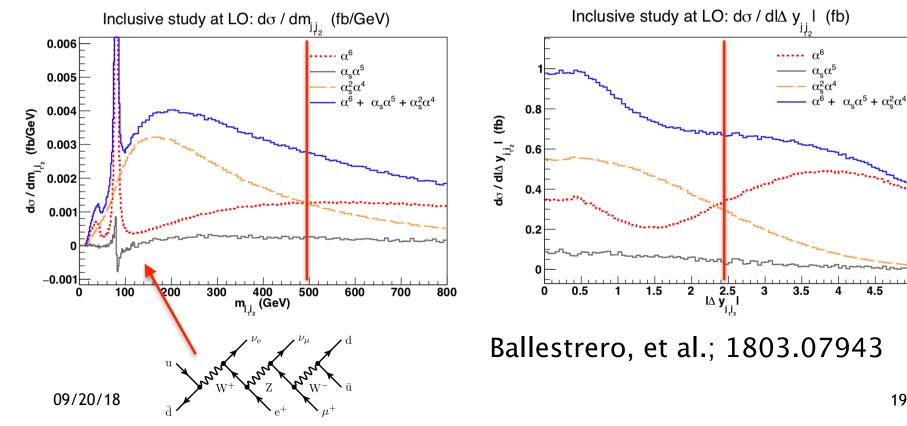
- Vector boson scattering (VBS) at the LHC
 - Interaction of massive vector bosons (W, Z) radiated by partons of the incoming protons
 - Probe the non-Abelian gauge structure of the EW interactions
- Key process to investigate electroweak symmetry breaking

- Typical signature of VBS events: 2 energetic jets and four fermions
- The scattering diagram can be mediated by Higgs boson

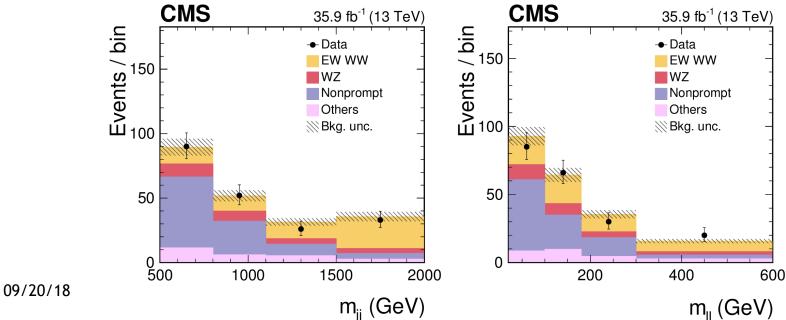

• Interaction of longitudinally polarized bosons is of particular interest 09/20/18

Experimental signature

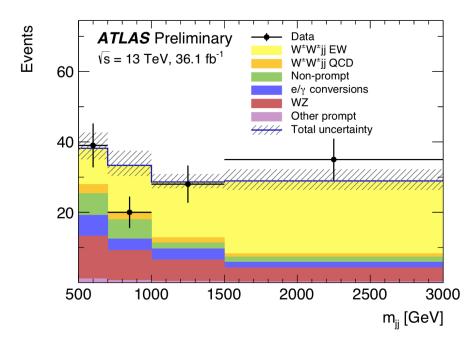
- VBS events at LHC have distinct event topology
 - Two energetic jets with large di-jet mass (m_{jj}) and pseudorapidity separation $|\Delta y_{jj}|$
 - "Centrality" of the diboson system with respect to the two forward jets
- Common feature of all VBS signatures
 - Example of W⁺W⁺
- Cuts to enhance the EW contribution
 - m_{jj} and $|\Delta y_{jj}|$ requirements
 - 'Centrality' requirements


$$z_i \;=\; rac{1}{\Delta \eta_{jj}} \, \left(\eta_i - rac{\eta_1 + \eta_2}{2}
ight)$$

Phys. Rev. D 54 (1996) 6680


Same-sign WW

- W±W± has the largest ratio of EW production to QCD initiated production
 - Double charge structure of the leptonic final state
 - QCD consists of diagrams with a gluon connecting the quark lines (no diagrams with gluon-gluon or quark-gluon)


CMS same-sign WW

- Measurement performed in ee, $\mu\mu$, and $e\mu$ final states
 - Major backgrounds (non-prompt leptons and QCD+EW WZ) estimated from data (use low m_{jj} for the WWjj QCD enhanced control region)
 - Signal extracted from a fit to m_{jj} and m_{ll} distributions (and control region)
 - Major uncertainties: jet energy scale/resolution, background modeling
- Observed (expected) significance is 5.5 (5.7) standard deviations

ATLAS same-sign WW

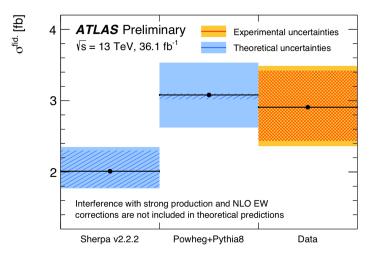
- Measurement performed in ee, $\mu\mu$, and $e\mu$ final states
 - Major backgrounds (non-prompt leptons and QCD+EW WZ) estimated from data (use low m_{jj} for the WWjj QCD enhanced control region)
 - Signal extracted from a fit to m_{jj} distribution in signal and control region
 - Major uncertainties: jet energy scale/resolution, background modeling
- Observed (expected) significance is 6.9 (4.6) standard deviations

Cross section measurement

- ATLAS and CMS fiducial definitions
- Main differences from jet pT and MET requirements

Requirement	CMS	ATLAS
$p_{ m T}^{j} > [{ m GeV}]$	30/30	65/35
$ \eta^j <$	5.0	4.5
$ \Delta\eta_{jj} >$	2.5	2.0
$E_{\mathrm{T}}^{\mathrm{miss}}$ [GeV]	N/A	30
$m_{\ell\ell} > [{ m GeV}]$	N/A	20

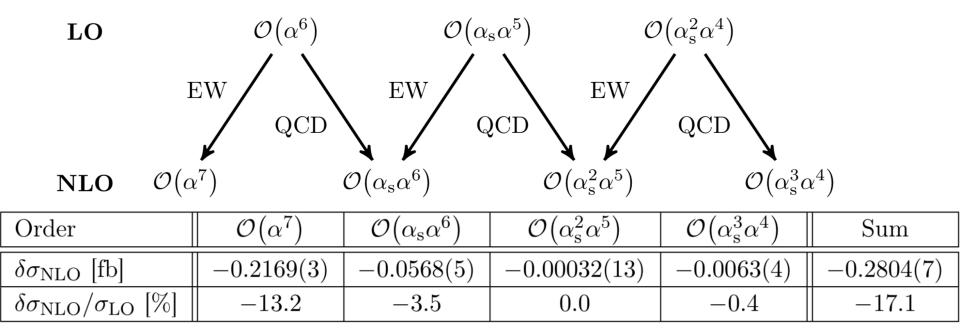
- CMS cross section:
 - The predicted cross section calculated at LO using Madgraph $\sigma_{\rm pred} = 4.25 \pm 0.27 {\rm fb}$


 $\sigma_{\text{meas}} = 3.83 \pm 0.66(\text{stat}) \pm 0.35(\text{syst})\text{fb}$

- ATLAS cross section:
 - The predicted cross section calculated at LO using Sherpa $\sigma_{\rm pred} = 2.01 \pm 0.28 {\rm fb}$

 $\sigma_{\text{meas}} = 2.91 \pm 0.50(\text{stat}) \pm 0.27(\text{syst})\text{fb}$

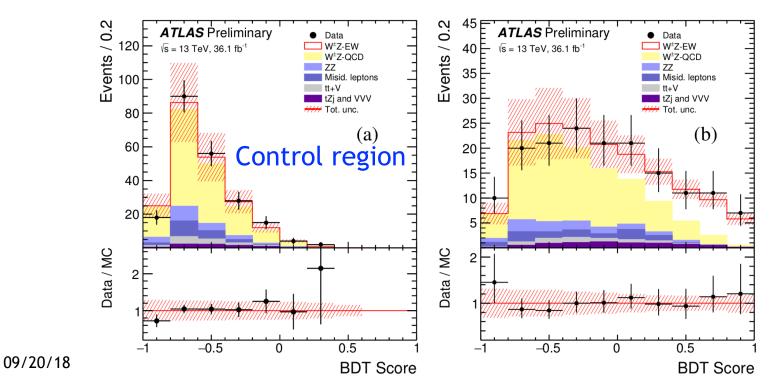
Theory predictions


- What about theory predictions? How consistent are different theory predictions?
- CMS uses Madgraph, ATLAS uses SHERPA
 - The interference contribution is not included (O(1%))

- Powheg includes NLO QCD corrections. What about NLO EW corrections?
- Need for reliable predictions: higher orders, parton showers, approximations, etc.

NLO corrections

• Same sign WW is the only diboson process with full NLO computation (EW and QCD) B. Biedermann, A. Denner, and M. Pellen


• EW corrections are large and negative (~-15%) in the fiducial region

Common feature for the VBS at LHC?

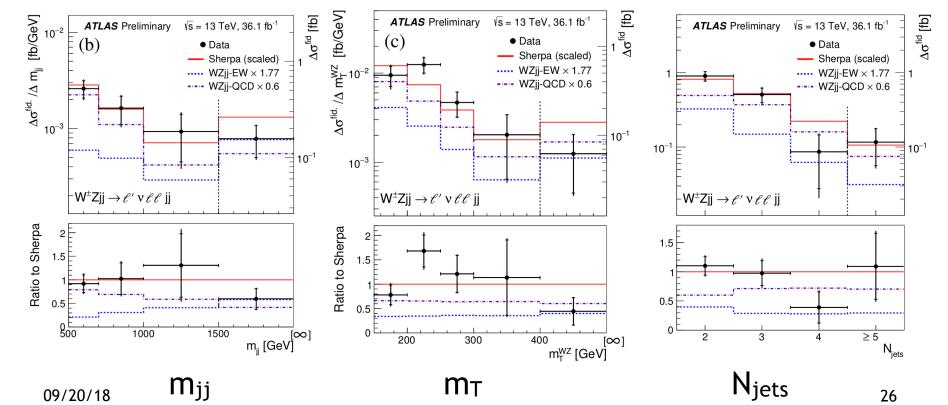
• Meaningless distinction between EW signal and QCD background at NLO

ATLAS WZ

- Measurement performed in three lepton final states
 - Major background (QCD WZ) estimated from data (use low m_{jj} for the WWjj QCD enhanced control region)
 - BDT trained to separate WZ EW signal from other processes
- Observed (expected) significance is 5.6 (3.3) standard deviations

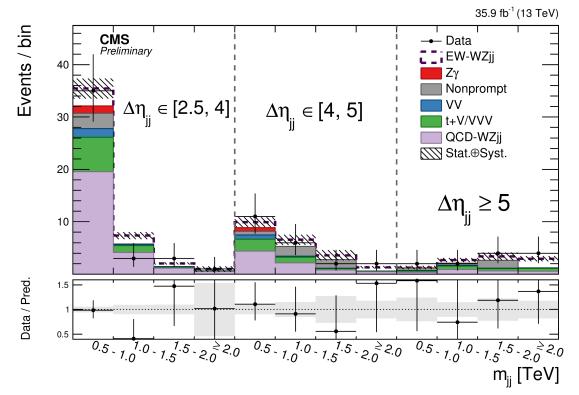
ATLAS WZ

- Fiducial cross section:
- Sherpa


 $\sigma_{\rm pred} = 0.32 \pm 0.03 {\rm fb}$

Madgraph

 $\sigma_{\rm pred} = 0.37 \pm 0.01 ({\rm stat}) {\rm fb}$


 $\sigma_{\text{meas}} = 0.57 \pm 0.14(\text{stat}) \pm 0.05(\text{syst}) \pm 0.04(\text{th.})\text{fb}$

• Differential cross sections in the VBS fiducial phase space

CMS WZ

- Measurement performed in three lepton final states
 - Major background (QCD WZ) estimated from data (use low m_{jj} for the WWjj QCD enhanced control region)
 - Signal extraction using 2D m_{jj} and $|\Delta y_{jj}|$ distributions
- Observed (expected) significance is 1.9 (2.7) standard deviations

CMS WZ

• Measured WZjj QCD+EW cross section in VBS enhanced phase space

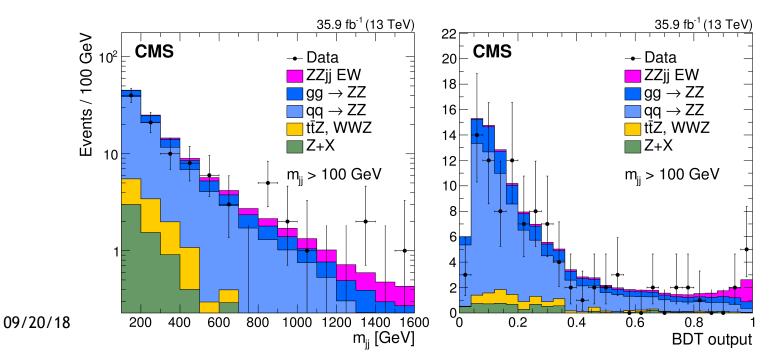
$$\sigma_{\rm WZjj}^{\rm fid} = 2.91^{+0.53}_{-0.49} \,(\text{stat}) \,\,^{+0.41}_{-0.34} \,(\text{syst})$$

$$\sigma_{\rm fid,MG} = 3.27 \,\,^{+0.39}_{-0.32} (\text{scale}) \pm 0.15 \,(\text{PDF})$$

• Theory prediction computed using Madgraph at LO

	-	
$p_{\rm T}(\ell_{{ m Z},1}) \; [{ m GeV}]$	> 25	> 20
	> 15	> 20
$p_{\rm T}(\ell_{\rm W}) \; [{\rm GeV}]$	> 20	> 20
$ \eta(\mu) $	< 2.5	< 2.5
$ \eta(e) $	< 2.5	< 2.5
	< 15	< 15
	> 100	> 100
	>4	> 4
	-	-
		< 4.7
	,	> 30
$ \Delta R({ m j},\ell) $		> 0.4
n_{j}	≥ 2	≥ 2
$p_{ m T}({ m b}) \; [{ m GeV}]$	-	-
$n_{ m b-jet}$	-	-
m_{jj}		> 500
		> 2.5
$ \eta_{3\ell} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2}) $	< 2.5	-
	$\begin{array}{c} p_{\mathrm{T}}(\ell_{\mathrm{Z},2}) [\mathrm{GeV}] \\ p_{\mathrm{T}}(\ell_{\mathrm{W}}) [\mathrm{GeV}] \\ & \eta(\mu) \\ & \eta(e) \\ m_{\mathrm{Z}} - m_{\mathrm{Z}}^{\mathrm{PDG}} [\mathrm{GeV}] \\ & m_{3\ell} [\mathrm{GeV}] \\ & m_{\ell\ell} [\mathrm{GeV}] \\ & p_{\mathrm{T}}^{miss} [\mathrm{GeV}] \\ & \eta(j) \\ & p_{\mathrm{T}}(j) [\mathrm{GeV}] \\ & \Delta R(j,\ell) \\ & n_{\mathrm{j}} \\ & p_{\mathrm{T}}(\mathrm{b}) [\mathrm{GeV}] \\ & n_{\mathrm{b-jet}} \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

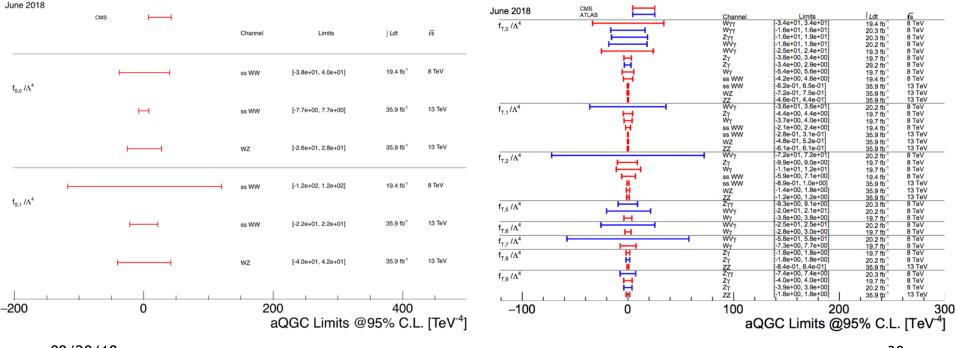
Tight Fiducial


Loose Fiducial

CMS ZZ

• ZZjj measurement in fully leptonic final state

- Small cross section but clean signature
- Exploit BDT to enhance the sensitivity


 m_{jj}, Δη_{jj}, z*(Z₁), z*(Z₂), R(p_T), dijet p_T balance, m_{4ℓ}
 Use all events with m_{jj} > 100 GeV
- Observed (expected) significance is 2.7 (1.6) standard deviations

Anomalous couplings

- Search for anomalous quartic gauge couplings
 - Enhancement of cross section at large diboson mass
- Use effective field theory (presented without unitarity bounds):

$$\mathcal{L}_{SM} \longrightarrow \mathcal{L}_{eff} = \mathcal{L}_{SM} + \sum_{n=1}^{\infty} \sum_{i} \underbrace{\frac{c_i^{(n)}}{\Lambda^n}}_{i} \mathcal{O}_i^{(n+4)}$$

09/20/18

Same-sign WW yields

CMS	e^+e^+	$e^+\mu^+$	$\mu^+\mu^+$	e ⁻ e ⁻	e- <i>µ</i> -	$\mu^{-}\mu^{-}$	Total
Data	14	63	40	10	48	26	201
Signal + total bkg.	19.0 ± 1.9	67.6 ± 3.8	44.1 ± 3.4	11.8 ± 1.8	38.9 ± 3.3	23.9 ± 2.8	205 ± 13
Signal	6.2 ± 0.2	24.7 ± 0.4	18.3 ± 0.4	2.5 ± 0.1	8.7 ± 0.2	6.5 ± 0.2	66.9 ± 2.4
Total bkg.	12.8 ± 1.9	42.9 ± 3.8	25.7 ± 3.4	9.4 ± 1.8	30.2 ± 3.3	17.4 ± 2.8	138 ± 13
Nonprompt	5.6 ± 1.7	24.9 ± 3.6	18.4 ± 3.3	5.0 ± 1.6	19.9 ± 3.2	14.2 ± 2.8	88 ± 13
WZ	3.0 ± 0.2	8.5 ± 0.3	4.4 ± 0.2	1.9 ± 0.2	5.2 ± 0.3	2.2 ± 0.1	25.1 ± 1.1
QCD WW	0.6 ± 0.1	1.7 ± 0.1	1.3 ± 0.1	0.2 ± 0.1	0.6 ± 0.1	0.4 ± 0.1	4.8 ± 0.4
$\mathrm{W}\gamma$	1.4 ± 0.5	3.6 ± 0.9	0.2 ± 0.2	0.8 ± 0.4	2.3 ± 0.7	—	8.3 ± 1.6
Triboson	0.8 ± 0.2	2.2 ± 0.4	1.2 ± 0.3	0.3 ± 0.1	0.9 ± 0.3	0.5 ± 0.2	5.8 ± 0.8
Wrong sign	1.5 ± 0.6	1.4 ± 0.4		1.1 ± 0.5	1.2 ± 0.4	—	5.2 ± 1.1
	e^+e^+	<i>e</i> ⁻ <i>e</i> ⁻	$e^+\mu^+$	$e^-\mu^-$	$\mu^+\mu^+$	$\mu^-\mu^-$	combined
WZ ATLAS	1.7 ± 0.6	1.2 ± 0.4	13 ± 4	8.1 ± 2.5	5.0 ± 1.6	3.3 ± 1.1	32 ± 9
Non-prompt	4.1 ± 2.4	2.3 ± 1.8	9 ± 6	6 ± 4	0.57 ± 0.16	0.67 ± 0.26	23 ±12
e/γ conversions	1.74 ± 0.31	1.8 ± 0.4	6.1 ± 2.4	3.7 ± 1.0	-	-	13.4 ± 3.5
Other prompt	0.17 ± 0.06	0.14 ± 0.05	0.90 ± 0.24	0.60 ± 0.25	0.36 ± 0.12	0.19 ± 0.07	2.4 ± 0.5
$W^{\pm}W^{\pm}$ jj strong	0.38 ± 0.13	0.16 ± 0.06	3.0 ± 1.0	1.2 ± 0.4	1.8 ± 0.6	0.76 ± 0.26	7.3 ± 2.5
Expected background	8.1 ± 2.4	5.6 ± 1.9	32 ± 7	20 ± 5	7.7 ± 1.7	4.9 ± 1.1	78 ±15
$W^{\pm}W^{\pm}$ jj electroweak	3.80 ± 0.30	1.49 ± 0.13	16.5 ± 1.2	6.5 ± 0.5	9.1 ± 0.7	3.50 ± 0.29	40.9 ± 2.9
Data	10	4	44	28	25	11	122

ATLAS and CMS WZ

CMS

	Electroweolt Simol
	Electroweak Signal
$p_{\mathrm{T}}(\ell_{\mathrm{Z},1}) \mathrm{[GeV]}$	> 25
$p_{\mathrm{T}}(\ell_{\mathrm{Z},2}) \mathrm{[GeV]}$	> 15
$p_{\rm T}(\ell_{\rm W}) [{ m GeV}]$	> 20
$ \eta(\mu) $	< 2.4
$ \eta(e) $	< 2.5
$ m_{\rm Z} - m_{\rm Z}^{\rm PDG} $ [GeV]	< 15
$m_{3\ell}$ [GeV]	> 100
$m_{\ell\ell} \; [{ m GeV}]$	> 4
p_{T}^{miss} [GeV]	> 30
$ \eta(\mathrm{j}) $	< 4.7
$p_{\rm T}({\rm j}) [{\rm GeV}]$	> 50
$ \Delta R({ m j},\ell) $	> 0.4
$n_{ m j}$	≥ 2
$p_{\rm T}({ m b}) ~[{ m GeV}]$	> 30
$n_{ m b-jet}$	= 0
m_{jj}	> 500
$ \Delta\eta({ m j}_1,{ m j}_2) $	> 2.5
$\left \eta_{3\ell} - \frac{1}{2}(\eta_{j_1} + \eta_{j_2})\right $	< 2.5

ATLAS

$$- p_T(\ell_W) > 20 \text{ GeV}$$

- e: exclude [1.37, 1.52]

$$- m_T(W) > 30 \text{ GeV}$$

ATLAS WZ

	SR	OCD CP	<i>b</i> -CR	ZZ-CR
		QCD-CR		
Data	161	213	141	52
Total MC	199.2 ± 1.4	289.4 ± 1.9	159.2 ± 1.8	44.7 ± 6.4
WZjj-EW (signal)	24.93 ± 0.18	8.46 ± 0.10	1.36 ± 0.05	0.21 ± 0.12
<i>WZjj-</i> QCD	144.17 ± 0.85	231.2 ± 1.1	24.44 ± 0.29	1.43 ± 0.69
Misid. leptons	9.2 ± 1.1	17.7 ± 1.5	29.7 ± 1.6	0.50 ± 0.32
ZZ-QCD	8.10 ± 0.19	14.98 ± 0.34	1.96 ± 0.08	35.0 ± 5.9
tZ	6.46 ± 0.18	6.56 ± 0.19	36.19 ± 0.45	0.18 ± 0.09
$t\bar{t} + V$	4.21 ± 0.18	9.11 ± 0.23	65.36 ± 0.64	2.8 ± 1.3
ZZ-EW	1.50 ± 0.10	0.44 ± 0.05	0.10 ± 0.08	3.4 ± 1.6
VVV	0.59 ± 0.03	0.93 ± 0.04	0.13 ± 0.01	1.0 ± 1.0

Source	Uncertainty [%]
<i>WZjj</i> -EW theory modelling	5.0
WZjj-QCD theory modelling	2.3
WZjj-EW and WZjj-QCD interference	1.9
Jets	6.7
Pileup	2.2
Electrons	1.6
Muons	0.7
<i>b</i> -tagging	0.3
MC statistics	2.1
Misid. lepton background	1.0
Other backgrounds	0.1
Luminosity	2.1

CMS WZ

Process	μμμ	μμе	eeµ	eee	Total Yield
QCD WZ	14.1 ± 0.9	9.4 ± 0.5	7.1 ± 0.4	4.8 ± 0.3	35.4 ± 1.1
t+V/VVV	6.0 ± 0.4	3.4 ± 0.2	2.6 ± 0.2	1.8 ± 0.1	13.7 ± 0.5
Nonprompt	5.1 ± 2.1	2.3 ± 1.0	1.4 ± 0.6	0.7 ± 0.3	9.5 ± 2.4
VV	0.9 ± 0.1	1.7 ± 0.2	$0.5\pm < 0.1$	0.7 ± 0.1	3.7 ± 0.2
$\mathrm{Z}\gamma$	< 0.1	2.2 ± 0.8	< 0.1	< 0.1	2.2 ± 0.9
Pred. Background	26.0 ± 2.2	18.9 ± 1.6	11.6 ± 0.8	8.0 ± 0.5	64.5 ± 2.9
EW WZ	5.1 ± 1.1	3.6 ± 0.8	2.5 ± 0.5	1.8 ± 0.4	13.0 ± 1.5
Data	38	15	12	10	75

Source of systematic uncertainty	Relative systematic uncertainty [
	$\sigma_{\mathrm{WZ}jj}$	EW WZ Significance	
Jet energy scale	+9.8/-9.2	7.5	
Jet energy resolution	+1.1/-1.9	< 0.1	
QCD WZ modeling	-	0.9	
Other background theory	+2.5/-2.2	0.2	
Nonprompt normalization	+2.1/-2.4	1.1	
Nonprompt stat.	+6.1/-5.8	6.2	
Lepton energy scale and eff.	+3.5/-2.7	< 0.1	
b-tagging	+1.7/-1.9	< 0.1	
Luminosity	+3.1/-3.4	< 0.1	