Prospects for longitudinal ZZ scattering

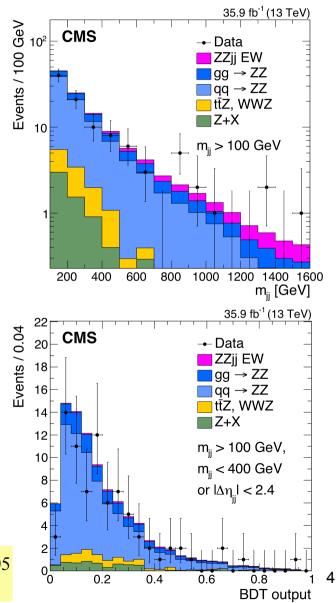
C. Charlot

VBS Polarization workshop, Oct. 10-12, Palaiseau

Outline

- **D** Motivation
- □ Current result for VBS ZZ
- Polarization study (Phantom)
 - $\hfill\square$ Effect of p_T and η lepton cuts
- □ Very first look at backgrounds

Why ZZ in fully leptonic?


- \Box Precise reconstruction o(%) of Z decays
 - \Box Precise reconstruction of the scattering energy with m₄₁
 - □ Precise determination of angular correlations
- □ Low reducible backgrounds
- □ Reliable projections from (simplistic) gen level studies
- □ But very low cross section

CMS 2016 analysis

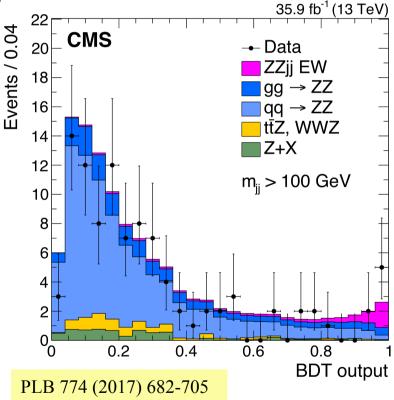
- Low statistics, don't want to throw away events
 => multivariate classifier (BDT)
- □ Input variables: m_{jj} , $\Delta \eta_{jj}$, z_1^* , z_2^* , p_T balance, dijet p_T balance, m_{41} (no 3rd jet veto)
- BDT optimized, performance checked against Matrix Element Approach, also cut based
- Signal extracted from template fit of the BDT distributions to the data
- □ Background validated in QCD enriched CR $(m_{ii} < 400 \text{ GeV or } |\Delta \eta_{ii}| < 2.4)$

PLB 774 (2017) 682-705 SMP-17-006

CMS 2016 results

Selection	$t\bar{t}Z$ and WWZ	QCD ZZjj	Z+X	Total bkg.	EW ZZjj	Total expected	Data
ZZjj	7.1 ± 0.8	97 ± 14	6.6 ± 2.5	111 ± 14	6.2 ± 0.7	117 ± 14	99
VBS	0.9 ± 0.2	19 ± 4	0.7 ± 0.3	20 ± 4	4 ± 0.5	25 ± 4	19

VBS selection: m_{jj} >400 GeV $|\Delta \eta_{jj}|$ >3.6


□ Signal strength:

 $\mu = 1.39^{+0.72}_{-0.57}$ (stat) $^{+0.46}_{-0.31}$ (syst) $= 1.39^{+0.86}_{-0.65}$

- \Box Observed significance: 2.7 σ (expected 1.6 σ)
- □ Fiducial cross section:

 $\sigma_{\rm EW}({\rm pp} o ZZjj o \ell\ell\ell'\ell'jj) = 0.40^{+0.21}_{-0.16} \, ({\rm stat}) \, {}^{+0.13}_{-0.09} \, ({\rm syst}) \, {\rm fb}$

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper
f_{T_0}/Λ^4	-0.53	0.51	-0.46	0.44
f_{T_1}/Λ^4	-0.72	0.71	-0.61	0.61
f_{T_2}/Λ^4	-1.4	1.4	-1.2	1.2
f_{T_8}/Λ^4	-0.99	0.99	-0.84	0.84
f_{T_9}/Λ^4	-2.1	2.1	-1.8	1.8

Constraints on f_{T0} stronger than from ssWW (weaker for f_{T1} and similar for f_{T2})

Polarization study

Final state: $pp \rightarrow e^+e^-\mu^+\mu^- jj$, generator level study

□ Software setup

□ Phantom 1.5b (in collaboration with Phantom authors)

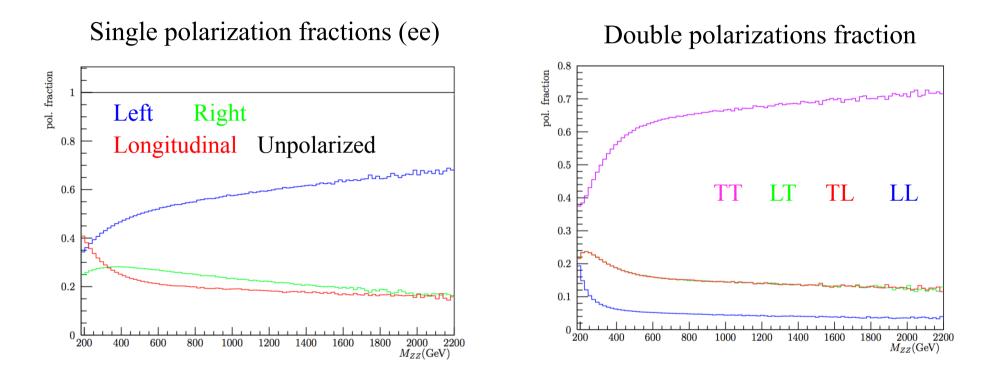
 $\Box \sqrt{s} = 13 \text{ TeV}$

- □ NNPDF30_lo_as_130
- **QCD** scales: $m_{4l}/\sqrt{2}$
- □ Selection:
 - $\Box p_T^{j>20}$ GeV, $|\eta_j| < 5$
 - \Box m_{jj}>600 GeV, $|\Delta \eta_{jj}|>3.6$, η_{j1} . $\eta_{j2}<<0$
 - \square m_{ZZ}>2m_Z
 - $\Box m_{ll} > 40 \text{ GeV}$
 - □ $86.2 < m_Z < 96.2$ GeV (as recommended by Phantom authors, see discussion by A. Ballestero)

A. Li internship

Cross sections @ 13 TeV

 $pp \rightarrow e^+e^-\mu^+\mu^- jj$, no lepton cuts

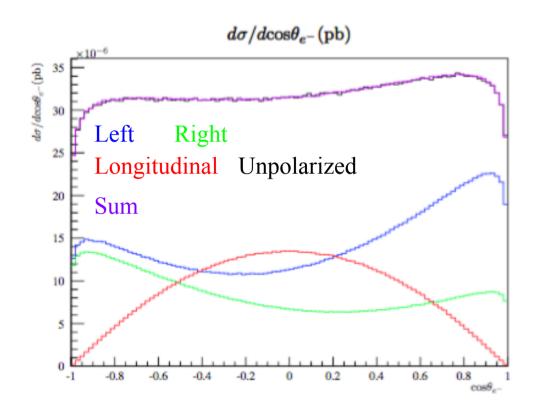

	Full	Z ^e Left	Z ^e Right	Z ^e Long	Long- Long	ТТ	Long-T + T-Long
Cross section (fb)	0.064	0.029	0.017	0.018	0.005	0.034	0.025
Fraction	1	0.454	0.268	0.278	0.083	0.526	0.391

T = transverse

 \Box Cross sections are small o(10⁻²fb)

□ longitudinal-longitudinal fraction: 8.3% (without lepton cuts)

Polarization fractions

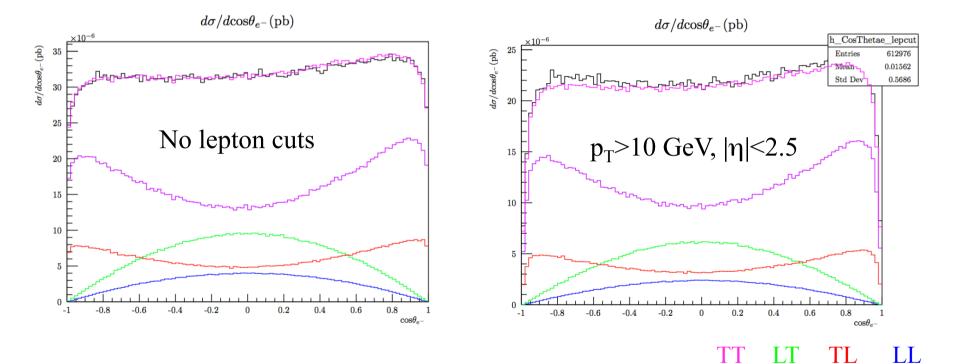


□ long-long fraction: 8.3% integrated

□ Peaks at ~2m_Z, decreases with increasing m_{ZZ} : ~5% for m_{ZZ} > 500 GeV

TT: transverse-transverse LT: longitudinal-transverse TL: transverse-longitudinal LL: longitudinal-longitudinal

Costheta


 Angle between the electron momentum direction in the Z rest frame and the Z momentum direction in the lab frame

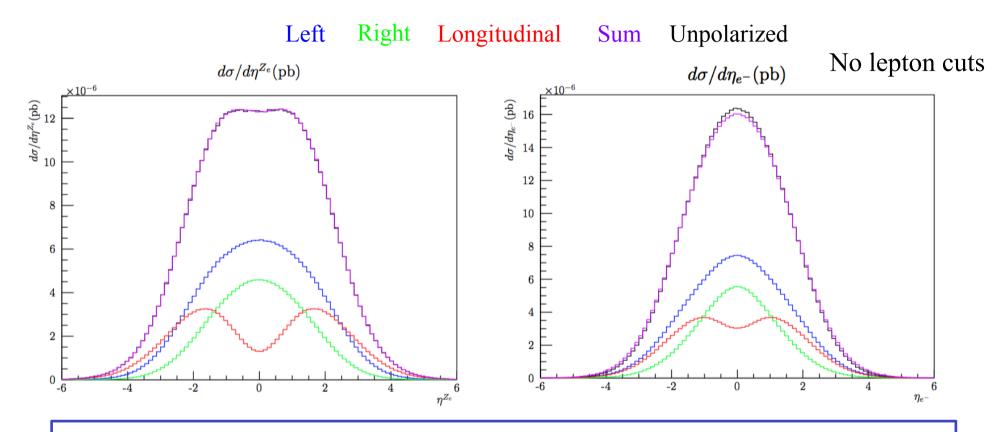
No lepton cuts

- □ Typical distribution for the longitudinal polarization
- □ Good discrimination potential long vs right and left

Cut effects on costheta

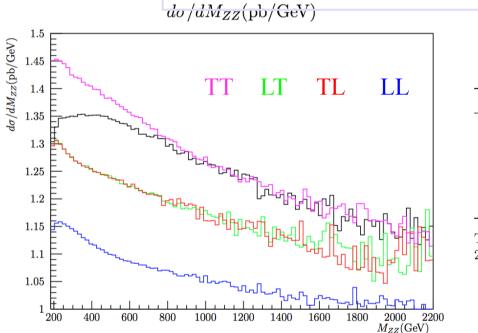

Double polarization distributions

- □ Visible cut effects at the edges of the costheta distribution
- □ In the region where the most difference long vs transverse, although very localized


Z transverse momentum

No lepton cuts

- \Box Softer Z boson p_T distribution for the longitudinal case
- □ Less separation for the decay electron (costheta folded in) => there is interest to reconstruct the Z momentum


Z pseudorapidity

 \Box Longitudinal Zs have a very different η distribution, peaks at $|\eta| \sim 2$

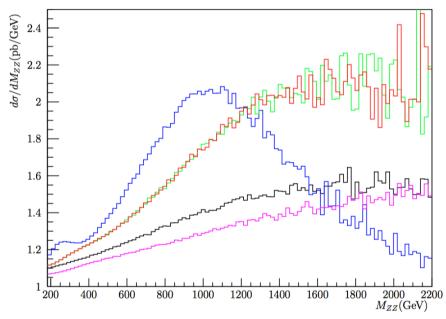
- \Box The effect increases with increasing m_{ZZ} (relates to Higgs interference)
- \Box Consequence for HL-LHC detectors: forward region is important for $V_L V_L!$
- Less separation for the decay electron (costheta folded in) => there is interest to reconstruct the Z momentum

Impact of lepton p_T cut

Ratio of cross section p _T >20,10,10,10 GeV / 20,20,20,20 GeV
--

 $p_t^{\text{lepton}} > 20 \text{GeV}$ $p_t^{\text{lepton}} > 20, 10, 10, 10 \text{GeV}$ $\sigma_{20,10,10,10}/\sigma_{20}$ Gain Unpol 3.2633.67%4.361.34LL(signal) 13.65%0.270.311.14LT0.620.791.2826.79%26.75%TL0.620.791.28TT1.712.391.3939.38%LT+TL+TT(bkg) 2.954.171.4141.36%

Table 2 – Cross-section and the gain after and before changing $p_t^{\rm lepton}>20{\rm GeV}$ to $p_t^{\rm lepton}>20,10,10,10{\rm GeV}$


□ Much more increase of LT, TL and TT than for LL signal when lowering the lepton p_T , does not look interesting

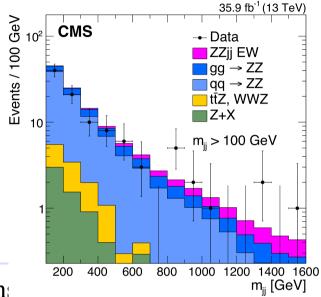
 \Box Lowering the lepton p_T does increase the overall VBS signal though

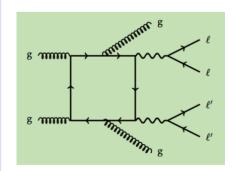
Effect of η leptons cut

Ratio of cross section $|\eta_e| < 3 / |\eta_e| < 2.5$

 $d\sigma/dM_{ZZ}(\text{pb/GeV})$

	$ \eta_{\rm lepton} < 2.5$	$ \eta_{\rm lepton} < 3.0$	$\sigma_{3.0}/\sigma_{2.5}$	Gain
Unpol	3.26	3.82	1.17	16.96%
$\mathrm{LL}(\mathrm{sgn})$	0.27	0.34	1.27	27.03%
LT	0.62	0.76	1.21	21.57%
TL	0.62	0.76	1.21	21.56%
TT	1.71	1.95	1.14	13.68%
LT+TL+TT(bkg)	2.95	3.35	1.14	14%


Table 3 – Cross-section in $\times 10^{-5} pb$ and gain after changing $|\eta_{\rm lepton}| < 2.5$ to 3


=> Extending the lepton acceptance up to $|\eta| = 3$: LL signal increases by 1.27, overall LT+TT background increases by 1.14

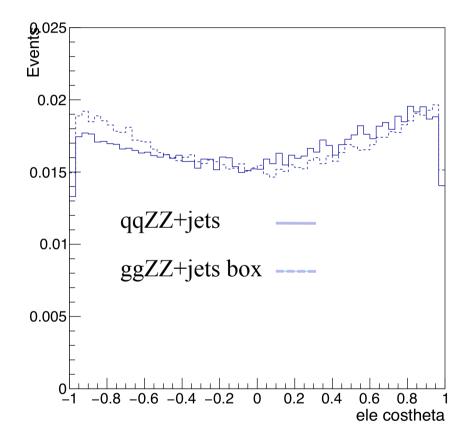
=> Need of extended acceptance increases with increasing m_{ZZ}

Mixed EW-QCD backgrounds

- □ Dominant background to VBS ZZ is from pp→ZZjj with two QCD vertices $(a_s^2a^4, qq \rightarrow ZZ \text{ on the plot})$
- □ MadGraph aMC@NLO with FxFx merging used
- uncertainty from QCD scales sizeable, though not dominant (~10%)
- □ Second leading background is from $gg \rightarrow ZZjj$ box diagram
- $\Box \quad Up \text{ to now simulated with MCFM} + PS$
 - First results from Madgraph shown reasonable agreement once default shower settings are used
 - □ However technical difficulties in simulating this process at ME
- □ Resulted in a 40% uncertainty on MCFM $gg \rightarrow ZZjj$ yield

=> ME simulation of loop-induced gg \rightarrow ZZjj highly needed

First look at background polarization


- □ In order to extract VBS signal polarization, we also need to look at the backgrounds for the most discriminant distributions
- □ First look here at costheta

□ Simulation setup:

- □ qqZZ: MadGraph aMC@NLO ZZ+2jets, FxFx merging
- \Box ggZZ box: MCFM + PS (Pythia8)
- \Box $\sqrt{s} = 13 \text{ TeV}$
- □ Jet p_T >25 GeV, $|\eta|$ <4.7, m_{ii} >100 GeV
- □ Electron(muon) $p_T > 20, 10, 7(5), 7(5)$ GeV, $|\eta| < 2.5$

□ Gen level results

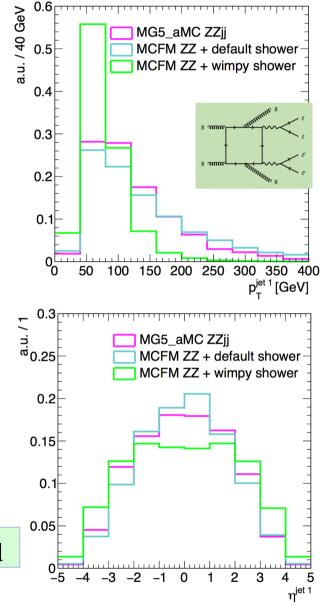
First look at background polarization

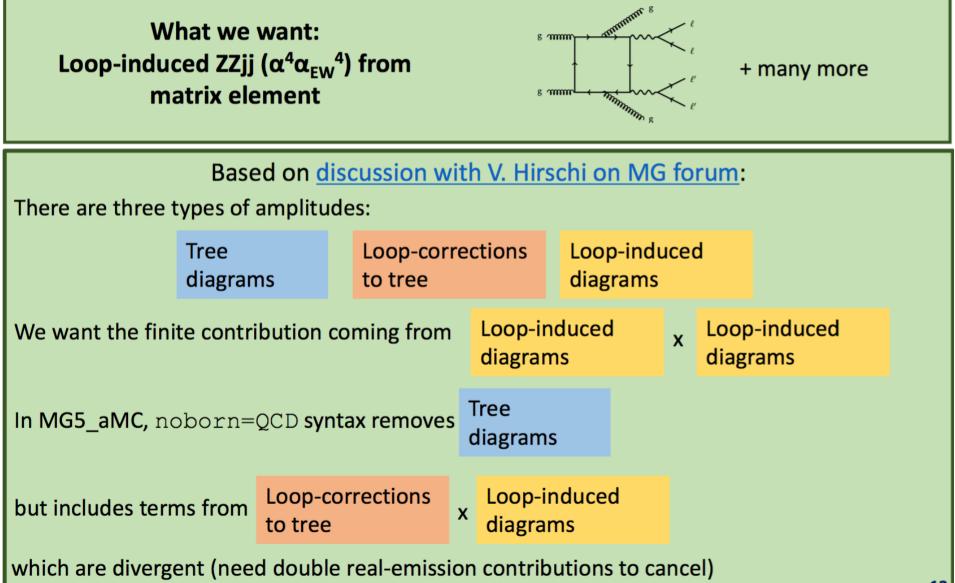
- Background more transverse-like as could be expected
- Both backgrounds show rather similar behaviour
- □ qqZZjj: slightly more left-like
- note that qqZZ actualy corresponds to many diagrams, including gluons in the initial state
- ggZZjj box: can we trust MCFM+PS here?

Conclusions

- \Box VBS $Z_L Z_L$ in fully leptonic final state investigated using recent tools
- □ Cross section small, but full reconstruction of the final state
- □ Costheta is the main discriminant distribution
- □ Production also characterized by softest and more forward Zs
- $\Box \quad Forward region is important for V_L V_L !$

Separation of longitudinal component will rely also on precise prediction for the mixed EW-QCD backgrounds


- □ Better predictions for jet kinematics needed for the ggZZjj box background
- □ Predictions for polarized distributions also needed for main backgrounds


ggZZ loop-induced background

- □ Challenging territory, gg→ZZ part of NNLO contribution to ZZ production
- □ Contributes to ~10% of inclusive yields but up to ~30% in most signal-like region
- \Box Currently simulated with MCFM => jets from PS
- □ What we need is loop-induced gg→ZZjj from ME $(\alpha_s^4 \alpha_{EW}^2)$
- First results from Madgraph shown reasonable agreement once default shower settings are used
- Technical implementation challenging, on-shell bosons decayed without mass smearing nor spin correlations in Madspin, O(10min/event)

ME prediction of gg box ZZjj

ME prediction of gg box ZZjj

Solutions:

- A. Exclude quark initial+final states (g g > z z g g), misses $q \rightarrow qg$ splittings
- B. Better: remove diagrams that are loop-corrections of the tree amplitude

```
1
```

```
Specify process:
```

```
Process card:
generate p p > z z j j QED=2 QCD=99 [noborn=QCD]
```

2

Remove loop-corrections, i.e., diagrams where no Z boson is attached to the loop:

```
[<MG_ROOT>/madgraph/loop/loop_diagram_generation.py]
```

```
if any([abs(pdg) not in range(1,7) for pdg in
diag.get_loop_lines_pdgs()])
or (23 not in diag.get_pdgs_attached_to_loop(structs)):
    valid_diag = False
```

3

Decay on-shell bosons. Caveat: no mass smearing nor spin correlations in MadSpin. Pythia won't consider branching ratios when restricting decays.