

Aging & discharge studies of μ-RWELL technology

G. Bencivenni¹, R. De Oliveira², G. Felici¹, M. Gatta¹, M. Giovanetti¹, G. Morello¹, A. Ochi³, M. Poli Lener¹

- 1. Laboratori Nazionali di Frascati INFN
- 2. CERN
- 3. Kobe University

The µ-RWELL: the detector architecture

The μ -RWELL is composed of only two elements: the μ -RWELL_PCB and the cathode

The μ-RWELL_PCB, the core of the detector, is realized by coupling:

- 1. a WELL patterned kapton foil as amplification stage
- 2. a **resistive layer (*)** for discharge suppression & current evacuation:
 - i. Single resistive layer (SRL) <100 kHz/cm²: surface resistivity ~100 M Ω / \square (SHiP, CepC, Novosisbirsk, EIC, HIEPA)
 - ii. Double resistive layer (DRL) >1 MHz/cm² (for LHCb-Muon upgrade & future colliders CepC, Fcc-ee/hh)
- 3. a standard readout PCB
- (*) DLC = Diamond Like Carbon highly mechanical & chemical resistant

DLC aging/discharge

wrt to a GEM detector the only new component in the μ -RWELL is the DLC, so that we think that aging/discharge studies for μ -RWELL should mainly be focussed on DLC behaviour under irradiation and current drawing

DLC Ageing/Discharge tests

To do list within the framework of the RD51-CP (USTC, Kobe, CERN and LNF:

- Ageing effects of the DLC due to current flow inducing a high current density:
 - GIF++: current up 10 nA/cm² TEST ON GOING
 - 5.9 keV X-ray: current up to 30 nA/cm²
 - current drawn by DLC (no radiation) in a gas-tight box with controlled humidity: current up to $1\mu A$ IN PREPARATION

- Discharge tests of DLC embedded on detectors irradiated with different radiation source:
 - localized 5.9 keV X-rays (spot 4x4 cm2)
 - gamma source (660 keV from ¹³⁷Cs spot 10x10 cm²) ON GOING
 - alpha particles (5.4 MeV from ²⁴¹Am) ON GOING
 - thermal neutrons

Summary

The μ-RWELL is a new technology suitable for large area planar tracking devices as well as high space resolution Cylindrical Inner Trackers:

- gas gain $> 10^4$
- rate capability > 1 MHz/cm² (w/HR layouts)
- space resolution < 100μm (over a large incidence angle of tracks)
- time resolution ~ 5.7 ns

Status of the R&D/engineering:

- Low rate (<100kHz/cm²):
 - small and large area prototypes built and extensively tested
 - Technology Transfer to industry (@ ELTOS) well advanced
- High rate (>1 MHz/cm²):
 - several layouts under study showing very promising performance
 - the engineering and the TT to industry will be started in 2019
- R&D on DLC manufacturing processes, study of stability under irradiation and current flow strongly required by the *Resistive-Community*

Every suggestion & help are welcome

SPARES SLIDES

Preliminary study: μ-RWELL vs GEM

- discharges for μ-RWELL are of the order of few tens of nA (<100 nA @ high gain)
- for GEM discharges the order of 1μA are observed at high gas gain

Ageing test at GIF++ (I)

The ageing effects on DLC is under study at the GIF++ by irradiating different μ -RWELL prototypes operated at a gain of ~4000 .

On the most irradiated detector (~200 kHz/cm² m.ip. equivalent) a charge of about 180 mC/cm² has been integrated (in about 240 days up-time of the source).

No effects have been observed till now. Detectors will be opened by the end of the 2018.

Ageing test at GIF++ (II)

Very Preliminary

HR:

- $Ar/CO_2/CF_4 = 45/15/40$
- $\rho_{\rm s} \sim 12~{\rm M}\Omega/\Box$
- 100 cm²
- 200 kHz/cm² mip equivalent
- Up-time $\sim 1,6x10^7$ sec
- $N_{\rm spark} \sim 32$

 $P_{\text{spark}} \sim 1 \times 10^{-13}$

LR:

- $Ar/CO_2 = 90/10$
- $\rho_{\rm s}$ ~ 70 M Ω/\Box
- 380 cm²
- 130 kHz/cm² mip equivalent
- Up-time $\sim 1.7 \times 10^7 \text{ sec}$
- $N_{\text{spark}} \sim 19$

 $P_{\text{spark}} \sim 2 \times 10^{-14}$