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Digital Tomosynthesis vs Computerised Tomography
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Much higher dose than X-ray 
but offers great 3D detail.

Around double dose than X-ray 
but offers depth information.



The benefit of the emitter array

11 Dec 2018 Thomas.Primidis@liverpool.ac.uk 4



Contents

1. Electron generation and acceleration

2. X-ray production from deceleration of electrons in a high Z target.

3. Filtration of the X-ray beam.

4. Transport of X-rays in the phantom-patient.

5. Radiation collection in a pixelated detector and generation of an image.

6. 3D image reconstruction using generated images.

7. Discussion on the methods, approximations and next steps.

11 Dec 2018 Thomas.Primidis@liverpool.ac.uk 5



X-ray generation
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Compare the unfiltered spectrum with literature
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Taken from
www.xrfresearch.com
on 7/12/18

http://www.xrfresearch.com/


The spectrum after the Al filter.
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Approximate this 
with a Gaussian:
μ=30keV
3σ=20keV
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45 point X-ray sources
7x7 configuration
1cm pitch
Uniform cone beam each of
40 degrees full cone angle

Spectrum is Gaussian 
approximation of the 
previous simulation.

The emitter array
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The phantom human head
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Voxel size: 0.488mmx0.488mmx1.25mm

184 slices x1.25=230 mm

Anonymous phantom in DICOM format taken from:
Patient Contributed Image Repository www.pcir.org
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The ideal X-ray detector

100% X-ray detection efficiency
100μm x 100μm pixel size

360 pixels, 36 mm total width
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The simulation geometry

Emitter array plane

Detector 1mm away 
from phantom at teeth 
height.

Source Detector Distance = 12cm

Phantom selected volume
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X-Ray images

μ = 𝑙𝑛
𝐼0
𝐼

𝐼 = 𝐼0𝑒
−𝜇𝐼0

Beer-Lambert Law
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Image reconstruction
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3D Shepp-Logan phantom
Ellipsoid parameters taken from:

HU to material conversion by
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Shepp-Logan phantom digital tomosynthesis
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Next steps: Use realistic description of the following
• Assumed monoenergetic e- pencil beam with zero emittance.
• Neglected electric and magnetic fields in the source geometry.
• Fitted a Gaussian instead of sampling energies from the actual spectrum.
• Assumed point sources.
• Assumed uniform cone beam of X-rays.
• Used an ideal detector.
• Did not include all the components of the system like collimators etc.

This is only a proof of principle that the image quality of DT can be assessed 
with Monte Carlo techniques and offer system optimisation potential.
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Most important challenge: Phase space sampling

• Source simulations only generate a few 100.000 X-rays per day on cluster.
• Imaging with high resolution detector requires trillions of X-rays to reduce stat. uncert.

5 orders of 
magnitude 
difference



11 Dec 2018 Thomas.Primidis@liverpool.ac.uk 19

Most important challenge: Phase space sampling
• Source simulations only generate a few 100.000 X-rays per day on cluster.
• Imaging with high resolution detector requires trillions of X-rays in MC.

A fast way to generate million times more particles must be found.
• Discrete multivariate distributions E(x,y,x`,y`)
• Multivariate Kernel Density Estimation
• Generative Adversarial Neural Networks
• Biasing techniques like particle splitting or even rare event.
• Apply some reasonable approximations.



Thank you
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