Design and Optimisation of Ultra-Compact, High-Resolution X-Ray Imaging Systems

Thomas Primidis

3rd OMA Topical Workshop - Medical Accelerator Design and Diagnostics

QUASAR

UK Research and Innovation

THPVA137

A MONTE CARLO APPROACH TO IMAGING AND DOSE SIMULATIONS IN REALISTIC PHANTOMS USING COMPACT X-RAY SOURCE

E. Skordis^{1†}, V. Vlachoudis CERN, Geneva, Switzerland C. P. Welsch, ¹Cockcroft Institute and University of Liverpool, UK

absorbed dose in the head phantom, image reconstruction (figure 4). The fluence is given in photons/cm²/primary X-ray

Figure 4: X-ray radiography image reconstruction by visualisation of the X-ray fluence behind the phantom.

and the dose in GeV/g/primary X-ray.

Digital Tomosynthesis vs Computerised Tomography

Around double dose than X-ray but offers depth information.

Much higher dose than X-ray but offers great 3D detail.

The benefit of the emitter array

Contents

- 1. Electron generation and acceleration
- 2. X-ray production from deceleration of electrons in a high Z target.
- 3. Filtration of the X-ray beam.
- 4. Transport of X-rays in the phantom-patient.
- 5. Radiation collection in a pixelated detector and generation of an image.
- 6. 3D image reconstruction using generated images.
- 7. Discussion on the methods, approximations and next steps.

X-ray generation

6

Compare the unfiltered spectrum with literature

XRF Spectrum for Pure (99.9%) Tantalum

The spectrum after the AI filter.

The emitter array

45 point X-ray sources7x7 configuration1cm pitchUniform cone beam each of40 degrees full cone angle

Spectrum is Gaussian approximation of the previous simulation.

The phantom human head

Voxel size: 0.488mmx0.488mmx1.25mm

Anonymous phantom in DICOM format taken from: Patient Contributed Image Repository www.pcir.org

Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions

Wilfried Schneider, Thomas Bortfeld and Wolfgang Schlegel <u>Physics in Medicine & Biology, Volume 45, Number 2</u>

The ideal X-ray detector

Thomas.Primidis@liverpool.ac.uk

11

The simulation geometry

X-Ray images

Beer-Lambert Law

Image reconstruction

3D Shepp-Logan phantom

Ellipsoid parameters taken from:

LI, Y.L., SUN, F.R., Liu, Z., QU, H.J. and LI, Q.N., 2005. The computation of three-dimension Shepp-Logan head phantom simulation projection data. *Journal of Shandong University* (Engineering Science), 1, p.013.

HU to material conversion by

Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions

Wilfried Schneider, Thomas Bortfeld and Wolfgang Schlegel <u>Physics in Medicine & Biology</u>, <u>Volume 45</u>, <u>Number 2</u>

Shepp-Logan phantom digital tomosynthesis

Next steps: Use realistic description of the following

- Assumed monoenergetic e- pencil beam with zero emittance.
- Neglected electric and magnetic fields in the source geometry.
- Fitted a Gaussian instead of sampling energies from the actual spectrum.
- Assumed point sources.
- Assumed uniform cone beam of X-rays.
- Used an ideal detector.
- Did not include all the components of the system like collimators etc.

This is only a proof of principle that the image quality of DT can be assessed with Monte Carlo techniques and offer system optimisation potential.

Most important challenge: Phase space sampling

- Source simulations only generate a few 100.000 X-rays per day on cluster.
- Imaging with high resolution detector requires trillions of X-rays to reduce stat. uncert.

Most important challenge: Phase space sampling

- Source simulations only generate a few 100.000 X-rays per day on cluster.
- Imaging with high resolution detector requires trillions of X-rays in MC.

A fast way to generate million times more particles must be found.

- Discrete multivariate distributions E(x,y,x`,y`)
- Multivariate Kernel Density Estimation
- Generative Adversarial Neural Networks
- Biasing techniques like particle splitting or even rare event.
- Apply some reasonable approximations.

Thank you

Thomas.Primidis@liverpool.ac.uk

linkedin.com/in/thomasprimidis

