

Technology Updates: a (personal) vision for the future in Proton Therapy

Marco Schippers

Technology Updates-future in Proton Therapy

Marco Schippers

1

Contents

Aim of new technologies: 1) Reduction of costs

2) Improve techniques / quality

- Dose application: techniques and limitations
- Accelerators
- Developments in Gantries
- Smaller accelerators
- New accelerator types

A non complete and non-sponsored overview and my personal opinion

Technology Updates-future in Proton Therapy

Dose delivery techniques: Depth

Tumor thickness

- → spread-out Bragg peak
- \rightarrow energy modulation

Methods:

- 1) at accelerator
- 2) just before patient (in "nozzle")

→ fast treatment → fast room switching

Intensity loss by degrading

Degrader purpose: decrease energy

however: - energy spread increases

- beam loss due to nuclear reactions in degrader
- beam size increases due to multiple scattering

Van Goethem et al., Phys. Med. Biol. 54 (2009)5831

RECENT DEVELOPMENT: NEW DEGRADER MATERIAL

Graphite C: ρ =1.9 g/cm³Z=6, A=12Boron Carbide B4C: ρ =2.5 g/cm³Z=5, A=11

→ shorter + smaller A=> less beam size increase

MCNPx + Turtle calc for degrading 250→ 84 MeV: BC: diverg: -6% size: -27% => transmission: +31%

Experiment:

transmission: +37%

Pencil Beam Scanning: best dose distribution

3D Pencil beam scanning

Technology Updates-future in Proton Therapy

PAUL SCHERRER INSTITUT

Moving organs

Danger to
 underdose and
 overdose

Overdosage (clinically not acceptable) 100 % = Target dose

Underdosage (clinically not acceptable)

Technology Updates-future in Proton Therapy

organ / tumor motion

Possible solutions:

Gating

Next steps forward in quality:

...so now we know what is neeeded:

The Five High's:

- Higher flexibility
- Higher speed
- Higher accuracy
- Higher intensity
- Higher cost REDUCTION

...but how to make it?

Accelerators

Present accelerator choice

	cyclotron	yclotron synchrotron	
Protons	in use, Ø3.5-5 m	in use, Ø8-10 m	
Carbon ions	test phase, Ø7 m	in use, Ø25 m	

Technology Updates-future in Proton Therapy

Cyclotron: isochronicity

Technology Updates-future in Proton Therapy

250 MeV proton cyclotron

Technology Updates-future in Proton Therapy

Internal proton source

Technology Updates-future in Proton Therapy

PAUL SCHERRER INSTITUT

Technology Updates-future in Proton Therapy

Advantages of a cyclotron

=> a cyclotron provides:

- continuous beam
- any intensity
- very fast adjustable intensity
- accurate intensity control
- great reliability
- in development: 450 MeV/nucl Carbon

+ range change of 5 mm < 50 ms

(with fast degrader and good magnets + power supplies)

Synchrotron

Protons only:

(Ø ~8 m)

synchrotron

Proton source + injector

Extracted beam

Synchrotron

Ring: •collect 10¹¹ particles •acceleration to desired E •storing of the beam Injection in ring at 7 MeV/nucl

Extraction into beam line

2 linear accelerators in series

Magnet to select ion source

Ion sources for different particles

Beam extraction from synchrotron

PAUL SCHERRER INSTITUT

Synchrotron beam: <u>noisy & spills</u>

E-change during extraction

=> a synchrotron provides:

- different ions
- fast switching between ions
- energy can be chosen (decreased during extracion)
- no degrader
- little beam losses
- easy access to components

Developments

in

Gantries

Technology Updates-future in Proton Therapy

Gantry for protons

Proton gantries: R=5-6 m ; 100-200 t.

Technology Updates-future in Proton Therapy

Technology Updates-future in Proton Therapy

S.

28

PAUL SCHERRER INSTITUT

PSI Gantry-2: fast 3D scanning

SC-Gantry for Proton therapy

PAUL SCHERRER INSTITUT

Patent licensed to ProNova Solutions, LLC

• Weight: ~ 12 tons

SC magnets:

- Weight \rightarrow x 0.1
- Length \rightarrow x 0.8
- Radius \rightarrow x 0.8

Gantry with SC magnets

-HIT, DKFZ

- World first carbon-gantry

Yoshiyuki Iwata, NIRS, Ciba (Japan): SC-Gantry for Carbon Ions

R=5.8 m 200 tons

Technology Updates-future in Proton Therapy

Technology Updates-future in Proton Therapy

high dp accept using FFA optics

Trbojevic, Brookhaven: FFA beam optics

Technology Updates-future in Proton Therapy

Smaller accelerators

PAUL SCHERRER INSTITUT

Compact synchrotron

		,	
		Conventional	New Design
5.1m	Circumference	23m	18m
New Design	Footprint	42.5m ²	27 m ²
Injector Microwave LINAC Ion Source	# of Magnets (Dipoles, Quads)	(6,10)	(4,4)
7.8m	Ion Source Type	With Filament	Without Filament
	220 MeVFirst facility	in Hokkaido st	tarted in 2013
Injector Duo-plasma	SCI LAVE		
LINAC	HITACH Inspire the N	HI lext	

Technology Updates-future in Proton Therapy

PAUL SCHERRER INSTITUT

Smaller proton synchrotron

How to minimize the cyclotron?

250 MeV: $B\rho = 2.4 \text{ Tm} (B\rho = \text{magnetic rigidity})$ NOW in cyclotrons: $R_{pole} = 0.8 \text{ m} \rightarrow B = 3 \text{ T}$ To reduce Radius: $\rightarrow R_{pole} = 0.3 \text{ m} \rightarrow B = 8 \text{ T}$

→ weight:
$$\left(\frac{0.3}{0.8}\right)^2 = 14\% = 20-30$$
 tons

Technology Updates-future in Proton Therapy

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

Reduction of of cyclotron size

IBA/SHI 250 Tons **Isochronous** Cyclotron

Varian – 90 Tons Isochronous Cyclotron

MEVION – 15 Tons Synchrocyclotron

Cyclotron: isochronicity

$$\frac{mv^2}{r} = Bqv$$

$$T_{circle} = \frac{2\pi N}{v} = \frac{2\pi M}{Bq} ; T_{circle} \approx 30 \text{ ns}$$

=> T_{circle} independent of orbit radius r

Technology Updates-future in Proton Therapy

Remedy: **synchro–cyclotron:** pulse RF and decrease f_{RF} with radius

⇒Needed in smaller

machines !!

Synchro-Cyclotron

8-10 T 250 MeV Synchro-cyclotron on a gantry

In use since dec. 2013

Technology Updates-future in Proton Therapy

PAUL SCHERRER INSTITUT

MEVION

Synchro-Cyclotron

8-10 T 250 MeV Synchro-cyclotron on a gantry

However:

- All degrading and collimation just before patient
- Pulsed beam => scanning difficult
- \$ per treatment room > for multiroom

Synchro-Cyclotron

5.6 T 230 MeV Synchro-cyclotron with a gantry

Technology Updates-future in Proton Therapy

Iron-free Magnet Design (MIT)

Iron-free superconducting cyclotron , using a set of Main Coils and two sets of three Shielding Coils to compensate the magnetic field outside the cyclotron. No iron \rightarrow low inductance \rightarrow E change ?

Technology Updates-future in Proton Therapy

New accelerator types

Recipe:

1) inject into ring

3) Extract beam

FFAG: Fixed Field Accelerator (FFAG)

FFA= synchro-cyclotron

- $(f_{RF} \text{ increases with E})$
- But: built as a ring
 - with special optics:

strong, alternating gradients.

=> all orbits/energies fit in ring

Proton ring: Ø=12 m

M.K. Craddock and K.R. Symon, Rev. Acc. Science and Techn., vol. I, (2008) 65–97

2) 1 MW RF until E reached

Technology Updates-future in Proton Therapy

Advantage:

- Fast (kHz speed!) energy change in accelerator
 Disadvantages:
- Heavy (100-200 tons)
- Not small (e.g. 12 m ∅)
- Very high power (several MW) needed
- Needs an injector (e.g. cyclotron)
- Pulsed (although kHz possible)
- Nr of particles per pulse uncertain

TUrnig LInac for Proton therapy

A proton linac mounted on a gantry. (courtesy of P. Carrio Perez, TERA Foudation)

PAUL SCHERRER INSTITUT

ADAM (CERN) and AVO, UK

ADVANTAGES:

- E change per pulse
- Small footprintDISADVANTAGES:
 - Only pulsed
- Dose per pulse??

Laser driven proton accelerator

Technology Updates-future in Proton Therapy

Marco Schippers

49

Laser driven proton accelerator

V. Malka et. al., Med. Phys. 31 (2004) 1587

U. Linz and J. Alonso, Phys. Rev. ST Accel. Beams 10, (2007)094801

Disadvantages at the moment:

- Continuous energy spectrum
- Only 10-20 MeV reached
- Not enough protons
- Neutrons
- Pulsed beam (target; laser)
- Low duty cycle (0.1-10 min)

→ Still Needed:

- Power increase of factor 100
- Higher repetition rate
- Targets
- Optimize spectrum

Technology Updates-future in Proton Therapy

Science fiction ?

Plasma wake field accelerator

THE PLASMA REVOLUTION

(electron) energy doubler

Blumenfeld, et al. Nature 445, 741–744 (2007).

N. Patel, Nature 449 133-135 (2007)

Particles can surf along giant plasma waves.

Technology Updates-future in Proton Therapy

Accelerator status (protons)

PAUL SCHERRER INSTITUT

PAUL SCHERRER INSTITUT

What are the compromises ?

Do they have at least the same quality as current p-therapy ?

Technology Updates-future in Proton Therapy

- Small cyclotron / synchrotron
- Fast energy change in synchrotron
- Linacs (fast E-change)
- Superconducting gantry:
 - \rightarrow Lower weight, C: + smaller diameter
 - → New/Faster scanning methods

Currently most new ideas are quite interesting,but too uncertain to use in a clinic soon.

→ so..... there is still a lot of interesting work!

PAUL SCHERRER INSTITUT

what is in the glass sphere?

The future may look unclear....

But there are many interesting developments!

Thank You!

