LHCb Status Report

Preema Pais
EPFL
On behalf of the LHCb Collaboration

LHCC open session
September 12, 2018
CERN
To date, a total of 8.8 fb\(^{-1}\) has been recorded

✦ 1.80 fb\(^{-1}\) collected (so far) in 2018
✦ Thanks to the LHC for excellent machine availability!
• Cumulative data-taking efficiency increasing, approaching 90%
• Alignment and calibration of the detector performed in real-time
Higher luminosity dataset → new analyses, increasing in complexity

High demand for MC simulation

- Current production rate at ~25 million events per day

Need to innovate to keep up with demand

- HLT farm used to produce MC simulated samples whenever possible (26.5% of total production)
- Increasing number of analyses adopting faster simulation techniques
Physics Analysis

- 447 papers in total
 - 19 papers (+ 1 CONF note) submitted for publication since the last LHCC session
- Three analyses with preliminary results
- Additional 32 analyses in review
<table>
<thead>
<tr>
<th>Paper Number</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PAPER-2018-021</td>
<td>Prompt Λ^+c production in pPb collisions at $\sqrt{s{NN}}=5.02$ TeV</td>
</tr>
<tr>
<td>PAPER-2018-030</td>
<td>Search for lepton-flavour-violating decays of Higgs-like bosons</td>
</tr>
<tr>
<td>PAPER-2018-031</td>
<td>Measurement of antiproton production in pHe collisions at $\sqrt{s_{NN}}=110$ GeV</td>
</tr>
<tr>
<td>PAPER-2018-029</td>
<td>Angular moments of the decay $\Lambda^0_b \rightarrow \Lambda \mu^+\mu^-$ at low hadronic recoil</td>
</tr>
<tr>
<td>PAPER-2018-025</td>
<td>Search for CP violation in $\Lambda^0_b \rightarrow pK^-$ and $\Lambda^0_b \rightarrow p\pi^-$ decays</td>
</tr>
<tr>
<td>PAPER-2018-024</td>
<td>Measurement of the relative $B^- \rightarrow D^0/D'^0/D^{*0}\mu^+\bar{\nu}_\mu$ branching fractions using B^- mesons from B^{*0s} decays</td>
</tr>
<tr>
<td>PAPER-2018-028</td>
<td>Measurement of the Ω^0_c baryon lifetime</td>
</tr>
<tr>
<td>PAPER-2018-026</td>
<td>First observation of the doubly charmed baryon decay $\Xi_{cc}^{++} \rightarrow \Xi_c^{*+}\pi^+$</td>
</tr>
<tr>
<td>PAPER-2018-015</td>
<td>Observation of $B^{0_s} \rightarrow D*\phi$ and search for $B^0 \rightarrow D^0\phi$ decays</td>
</tr>
<tr>
<td>PAPER-2018-014</td>
<td>Observation of the decay $B^{0_s} \rightarrow \bar{D}^0 K^+ K^-$</td>
</tr>
<tr>
<td>PAPER-2018-020</td>
<td>Measurement of angular and CP asymmetries in $D^0 \rightarrow \pi^+\pi^-\mu^+\mu^-$ and $D^0 \rightarrow K^+K^-\mu^+\mu^-$ decays</td>
</tr>
<tr>
<td>PAPER-2018-018</td>
<td>Observation of the decay $\bar{D}^{0_s} \rightarrow \chi_{2c} K^+ K^-$</td>
</tr>
<tr>
<td>PAPER-2018-027</td>
<td>Search for beautiful tetraquarks in the $\Upsilon(1S)\mu^+\mu^-$ invariant-mass spectrum</td>
</tr>
<tr>
<td>PAPER-2018-022</td>
<td>Observation of the decay $\Lambda^0_b \rightarrow \psi(2S)\rho\pi^-$</td>
</tr>
<tr>
<td>PAPER-2018-016</td>
<td>Measurement of $Z \rightarrow \tau^+\tau^-$ production in proton-proton collisions at $\sqrt{s}=8$ TeV</td>
</tr>
<tr>
<td>PAPER-2018-011</td>
<td>Central exclusive production of J/ψ and $\psi(2S)$ mesons in pp collisions at $\sqrt{s}=13$ TeV</td>
</tr>
<tr>
<td>PAPER-2018-019</td>
<td>First measurement of the lifetime of the doubly charmed baryon Ξ_{cc}^{++}</td>
</tr>
<tr>
<td>PAPER-2018-012</td>
<td>Measurement of the time-integrated CP asymmetry in $D^0 \rightarrow K^0_s K^0_s$ decays</td>
</tr>
<tr>
<td>PAPER-2018-017</td>
<td>Measurement of the CKM angle γ using $B^+ \rightarrow D K^+$ with $D \rightarrow K^0_s \pi^+\pi^-$, $K^0_s K^+K^-$ decays</td>
</tr>
<tr>
<td>PAPER-2018-032</td>
<td>Observation of two resonances in the $\Lambda^0_b \pi^{\pm}$ systems and precise measurement of the Σ_{b}^{\pm} and $\Sigma_{b}^{*\pm}$ properties</td>
</tr>
<tr>
<td>PAPER-2018-033</td>
<td>Measurement of the branching ratios of the decays $D^+ \rightarrow K^+K^+K^+$, $D^+ \rightarrow \pi^+\pi^+K^+$ and $D^{*+} \rightarrow \pi^+K^+K^+$</td>
</tr>
<tr>
<td>PAPER-2018-034</td>
<td>Evidence for a $\eta_c(1S)\pi^-$ resonance in $B^0 \rightarrow \eta_c(1S)K^+\pi^-$ decays</td>
</tr>
</tbody>
</table>
First Observation of the Decay $\Xi_{cc}^{++} \rightarrow \Sigma_c^{+}\pi^+$

- $\Xi_{cc}^{++} \rightarrow \Lambda_c^{+}K^{-}\pi^{+}\pi^{+}$ decay first observed by LHCb (PRL 119, 112001)
- Lifetime study of decay via weak interaction
- $\Xi_{cc}^{++} \rightarrow \Xi_c^{+}\pi^{+}$ decays expected to have a sizable branching fraction
- Search performed with 1.7 fb$^{-1}$ of data at $\sqrt{s}=13$ TeV
- Events selected with $\Xi_c^{+} \rightarrow pK^{-}\pi^{+}$
- $\Xi_{cc}^{++} \rightarrow \Lambda_c^{+}K^{-}\pi^{+}\pi^{+}$ used as a control channel

Ξ_{cc}^{++} mass consistent with previous measurement:

\[3620.6 \pm 1.5 \text{ (stat)} \pm 0.4 \text{ (syst)} \text{ MeV/c}^2\]

- Branching fraction ratio with respect to previous measurement:

\[0.035 \pm 0.009 \text{ (stat)} \pm 0.003 \text{ (syst)}\]
MEASUREMENT OF THE Ω_c^0 BARYON LIFETIME

- c-baryon lifetime measurement useful for testing higher order effects in heavy quark expansion (HQE)

- Lifetime measurement performed with $\Omega_c^0 \rightarrow pK\pi\pi$ decays obtained from $\Omega_b^0 \rightarrow \Omega_c^0 \mu^-\nu X$ using 3 fb$^{-1}$ of data (Run 1)

- $B^+ \rightarrow D^+ \mu^-\nu X$ decays used as a normalization channel

- Invariant mass fit performed with signal modelled using a double gaussian

![LHCB-Graph1](image1)

$+$ Data

- Full fit

$\Omega_c^0 \rightarrow pK\pi\pi$ Comb.

![LHCB-Graph2](image2)

$+$ Data

- Full fit

$D^+ \rightarrow K^-\pi^+\pi^+$ Comb.
• Simultaneous fit to Ω_c^0 and D^+ decay time distributions

$$\tau_{\Omega_c^0} \over \tau_{D^+} = 0.258 \pm 0.023 \pm 0.010$$

$$\tau_{\Omega_c^0} = 268 \pm 24 \pm 10 \pm 2 \text{ fs},$$

• Results obtained inconsistent with PDG averages, change expected mass hierarchy:

$$\tau_{\Xi^+} > \tau_{\Omega_c^0} > \tau_{\Lambda_c^+} > \tau_{\Xi_c^0}$$

LHCb

Measurement of the Ω_c^0 Baryon Lifetime

LHCb-PAPER-2018-028

![Graph showing Ω_c^0 decay time distributions with data and fit]

![Graph showing D^+ decay time distributions with data and fit]
OBSERVATION OF TWO RESONANCES IN THE $\Lambda^0_b\pi^\pm$ SYSTEMS

- Study of the $\Lambda^0_b\pi^\pm$ system using reconstructed Λ^0_b ($\rightarrow \Lambda_c^{+}\pi^{-}$) baryons combined with a prompt pion
 - Uses a dataset of 3 fb$^{-1}$
 - 234,270 ± 900 Λ^0_b candidates, those within 50 MeV/c2 of the peak maximum combined with a prompt pion
- First study data with prompt pion $p_T > 200$ MeV/c2 and $Q = m(\Lambda^0_b\pi^\pm) - m(\Lambda^0_b) - m(\pi^\pm) < 200$ MeV/c2
 - Improved measurement of ground state Σ^\pm and $\Sigma^{\ast\pm}$ baryon properties
 - Results consistent with previous CDF measurements, precision improved by a factor 5
Observation of two resonances in the $\Lambda^0_b\pi^\pm$ systems

- Extend study to region with $Q < 600$ MeV/c2
- Higher prompt pion p_T requirement (> 1000 MeV/c2) needed to suppress combinatorial background
- Peaks with local significances of 12.7σ (12.6 σ) are seen in the $\Lambda^0_b\pi^+$($\Lambda^0_b\pi^-$) distributions
Evidence for a $\eta_c(1S)\pi^-$ resonance in $B^0\rightarrow\eta_c(1S)K^+\pi^-$ decays

- Two-dimensional amplitude analysis of $B^0\rightarrow\eta_c(1S)K^+\pi^-$ decays performed with 4.7 fb$^{-1}$ of data
- Studies the $\bar{p}pK^+\pi^-$ spectrum, search for exotic $\eta_c\pi^-$ or η_cK^+ states (where η_c is reconstructed from a $\bar{p}p$ final state)
- Isobar model used to build amplitude description
- Coherent sum of amplitudes from resonant and non-resonant intermediate states
• Compare baseline model including only K^* resonances to models with additional amplitudes
• Good agreement with data is found when including a charged charmonium-like resonance
 • 3σ significance for $Z_c(4100)^-$
 • Cannot discriminate between favoured spin parity states $J^P=0^+$ and 1^-
• Additional statistics available with full Run 2 dataset (and in future datasets) will enable further study
Antiproton Production in pHe Collisions at $\sqrt{s_{NN}} = 110$ GeV

- Antiproton fraction in cosmic rays sensitive indirect probe of exotic astrophysical sources of antimatter
- Precision measurements of antiproton-proton flux ratio from PAMELA, AMS
 - Uncertainties in 10-100 GeV antiproton energy range dominated by uncertainty on production cross-section
- First measurement of prompt antiproton production in pHe collisions
 - Use proton beam of 6.5 TeV on helium gas target
 - PID from RICH detector response
 - 3 templates built from simulated samples
 - 2-d binned extended ML fit and cut-and-count method used to determine antiproton fraction

Graphs and Plots

1. **LHCb Data**
 - pHe $\sqrt{s_{NN}} = 110$ GeV
 - Various particle distributions
 - PID from RICH detector response

2. **Candidates per π**
 - Data
 - π^-, \bar{p}, K^-
 - $1.2 < p_T < 1.5$ GeV/c, $21.4 < p < 24.4$ GeV/c
 - LHCb $\sqrt{s_{NN}} = 110$ GeV
Antiproton production cross section shown (integrated over different kinematic regions)

• Uncertainty lower than 10% for most bins

• Lower than spread between predictions from various theoretical models

• Improves the precision of secondary antiproton cosmic ray flux predictions
Angular Moments of the Decay $Λ_0^b → Λμ^+μ^-$

- $b → s$ transitions proceed via FCNC; forbidden at tree level in the SM
 - New Physics contributions can occur at loop level
- $Λ_b → Λμ^-μ^+$ decay system described by five angles
- Moments analysis performed in the di-muon invariant mass squared range $15 < q^2 < 20$ GeV2/c4 (34 free parameters)
- Analysis performed with 5 fb$^{-1}$ of data (2011, 2012, 2016)
- Forward-backward asymmetries consistent with SM predictions

\[A^\ell_{FB} = -0.39 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst)} \]
\[A^h_{FB} = -0.30 \pm 0.05 \text{ (stat)} \pm 0.02 \text{ (syst)} \]
\[A^{ℓh}_{FB} = +0.25 \pm 0.04 \text{ (stat)} \pm 0.01 \text{ (syst)} \]
• Study of $B^0_s \rightarrow \bar{D}^{(*)0}\phi$ decays could help improve precision on CKM angle γ

• Measurement of fraction of longitudinal polarisation (f_L) could help constrain QCD models, search for NP

• Unbinned maximum likelihood fit of $\bar{D}^{(*)0}KK$ invariant mass spectrum

• $B^0_s \rightarrow \bar{D}^{(*)0}\phi$ signal modelled by non-parametric PDFs from simulated sample

• Two polarizations considered: $f_L=1$ (longitudinal) and $f_L=0$ (transverse)

• Branching fractions measured relative to $\bar{D}^{(*)0}\pi\pi$ decays

• f_L consistent with measurements from other colour-suppressed B^0 decays

• Limit set on branching fraction at 90(95)% CL

$$f_L = (73 \pm 15 \pm 3)\%$$

$$\mathcal{B}(B^0 \rightarrow D^0\phi) < 2.0 \ (2.2) \times 10^{-6}$$
LHCb Upgrade I

<table>
<thead>
<tr>
<th>Year</th>
<th>Run 2</th>
<th>LS2</th>
<th>Run 3</th>
<th>LS3</th>
<th>Run 4</th>
<th>LS4</th>
<th>Run 5,6,...</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>Run 2</td>
<td>LS2</td>
<td>Run 3</td>
<td>LS3</td>
<td>Run 4</td>
<td>LS4</td>
<td>Run 5,6,...</td>
</tr>
<tr>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2022</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2023</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2024</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2025</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2026</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2027</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2028</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2029</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2030</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2031</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2032</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Primary challenges after LS2:**
 - Take advantage of higher luminosity (current L0 hardware trigger limits data-taking rate)
 - Sub-detectors will need to handle increased occupancy (factor 5 increase in number of interactions per bunch crossing)
 - Radiation damage also a concern

\[
L = 4 \times 10^{32} \text{ cm}^{-2}\text{s}^{-1}
\]

\~1.1 interactions per bunch crossing

\~9.5 fb\(^{-1}\) expected (2011-2018)

\[
L = 1-2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}
\]

\~5 interactions per bunch crossing

\~50 fb\(^{-1}\) expected (Runs 3-4)

\[
L = 1-2 \times 10^{33} \text{ cm}^{-2}\text{s}^{-1}
\]
LHCb Upgrade I

Software-only trigger

New tracking stations

Upgraded calorimetry FE electronics, remove SPD/PS

Upgraded muon FE electronics, remove M1

New pixel VELO

Si strip tracker

New RICH PMTs + upgraded electronics
LHCb Upgrade I

- Software-only trigger
- New tracking
- Upgraded muon FE electronics, remove M1
- Upgraded calo
- New pixel VELO
- New RICH PMTs + upgraded electronics
- To be UPGRADED
- To be kept
- Detector Channels
- R/O Electronics
- DAQ
UNIT IGRADE I HIGHLIGHTS

VELO

- Module production PRR passed on July 16
 - Final prototype modules being constructed
 - Preparing for site-specific review
- Sensor and VeloPix ASICs production complete
- Tile production + testing well underway

Upstream Tracker

- Received first series of A-type sensors
- Bare stave production almost complete
- PEPI electronics PRR passed, ready for production
- Delays with SALT ASIC, aim for v3 submission at the end of this month
- Significant progress on integration & cooling
Upgrade I Highlights

SciFi tracker
- Fibre mat production essentially complete
- >90% of modules produced
- C-frame production to begin soon
- Successful test beam in July, validation of full readout chain

RICH detectors
- MaPMT production and QA completed
- Several developments (DAQ, controls) from system tests carried out at SysLab@CERN
- Electronics and mechanics production well underway
Computing Model TDR

- Document describing offline computing model for LHCb from Run 3 onwards, and related computing resource needs
 - First draft of TDR in preparation
 - Details baseline scenario for resource needs plus potential alternative models
 - General model considerations:
 - CPU resources dominated by MC production
 - Majority of data processing done via TURBO, with substantial data volume reduction
 - Alternative models include:
 - data parking to mitigate disk usage
 - increased development of faster simulation methods to reduce CPU needs
 - Aim to submit document to LHCC by end-September

Table of contents

1 Introduction and Scope
2 Historical evolution of the computing model during LHC Run 1 and Run 2
3 Evolution of the Physics Case
4 Run 3 Logical Workflows
 4.1 Offline Data Handling
 4.2 User Analysis
 4.3 Simulation
5 Resource Provisioning
 5.1 Computing Infrastructure Requirements
 5.2 Pledged Computing Resources via WLCG
 5.3 Non Pledged Computing Resources
6 Resource Requirements
 6.1 Baseline scenario
 6.2. Data Parking
 6.3. Reduced HLT Output Bandwidth
 6.4 Combined Data Parking and Reduced HLT Output Bandwidth
 6.5 Aggressive Fast Simulation Development
7 Bibliography
In HL-LHC environment, expect factor 10 increase in luminosity, interactions per bunch crossing

- Aim at exploiting HL-LHC phase to collect >300 fb⁻¹

- Huge challenge for detectors and TDAQ system

- Submitted Upgrade II Expression of Interest (EoI) in 2017

- New physics case document submitted to arXiv on August 27
LHCb Upgrade II

<table>
<thead>
<tr>
<th>Observable</th>
<th>Current LHCb</th>
<th>LHCb 2025</th>
<th>Belle II</th>
<th>Upgrade II</th>
<th>ATLAS & CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>EW Penguins</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R_K ($1 < q^2 < 6 \text{ GeV}^2c^4$)</td>
<td>0.1</td>
<td>0.025</td>
<td>0.036</td>
<td>0.007</td>
<td>–</td>
</tr>
<tr>
<td>R_{K^*} ($1 < q^2 < 6 \text{ GeV}^2c^4$)</td>
<td>0.1</td>
<td>0.031</td>
<td>0.032</td>
<td>0.008</td>
<td>–</td>
</tr>
<tr>
<td>R_ϕ, R_{pK}, R_π</td>
<td>–</td>
<td>0.08, 0.06, 0.18</td>
<td>–</td>
<td>0.02, 0.02, 0.05</td>
<td>–</td>
</tr>
<tr>
<td>CKM tests</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ, with $B^0_s \rightarrow D_s^+K^-$</td>
<td>4$^\circ$</td>
<td>–</td>
<td>1$^\circ$</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>γ, all modes</td>
<td>$^{(+17)\circ}_{(-22)^\circ}$</td>
<td>1.5$^\circ$</td>
<td>1.5$^\circ$</td>
<td>0.35$^\circ$</td>
<td>–</td>
</tr>
<tr>
<td>sin 2β, with $B^0 \rightarrow J/\psi K^0$</td>
<td>0.04</td>
<td>0.011</td>
<td>0.005</td>
<td>0.003</td>
<td>–</td>
</tr>
<tr>
<td>ϕ_s, with $B^0_s \rightarrow J/\psi\phi$</td>
<td>49 mrad</td>
<td>14 mrad</td>
<td>–</td>
<td>4 mrad</td>
<td>22 mrad</td>
</tr>
<tr>
<td>ϕ_s, with $B^0_s \rightarrow D_s^+D_s^-$</td>
<td>170 mrad</td>
<td>35 mrad</td>
<td>–</td>
<td>9 mrad</td>
<td>–</td>
</tr>
<tr>
<td>ϕ_s^{ss}, with $B^0_s \rightarrow \phi\phi$</td>
<td>154 mrad</td>
<td>39 mrad</td>
<td>–</td>
<td>11 mrad</td>
<td>Under study</td>
</tr>
<tr>
<td>q_s</td>
<td>33×10^{-4}</td>
<td>10×10^{-4}</td>
<td>–</td>
<td>3×10^{-4}</td>
<td>–</td>
</tr>
<tr>
<td>$</td>
<td></td>
<td>V_{ub}</td>
<td></td>
<td>/</td>
<td></td>
</tr>
<tr>
<td>B^0_s, $B^0 \rightarrow \mu^+\mu^-$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{B(B^0 \rightarrow \mu^+\mu^-)/B(B^0_s \rightarrow \mu^+\mu^-)}{}$</td>
<td>90%</td>
<td>34%</td>
<td>–</td>
<td>10%</td>
<td>21%</td>
</tr>
<tr>
<td>$\tau_{B^0_s \rightarrow \mu^+\mu^-$</td>
<td>22%</td>
<td>8%</td>
<td>–</td>
<td>2%</td>
<td>–</td>
</tr>
<tr>
<td>$S_{\mu\mu}$</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.2</td>
</tr>
<tr>
<td>$b \rightarrow c\ell^-\bar{\nu}_l$ LUV studies</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$R(D^*)$</td>
<td>0.026</td>
<td>0.0072</td>
<td>0.005</td>
<td>0.002</td>
<td>–</td>
</tr>
<tr>
<td>$R(J/\psi)$</td>
<td>0.24</td>
<td>0.071</td>
<td>–</td>
<td>0.02</td>
<td>–</td>
</tr>
<tr>
<td>Charm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\Delta A_{CP}(KK - \pi\pi)$</td>
<td>8.5×10^{-4}</td>
<td>1.7×10^{-4}</td>
<td>5.4×10^{-4}</td>
<td>3.0×10^{-5}</td>
<td>–</td>
</tr>
<tr>
<td>A_{τ} ($\approx x \sin \phi$)</td>
<td>2.8×10^{-4}</td>
<td>4.3×10^{-5}</td>
<td>3.5×10^{-4}</td>
<td>1.0×10^{-5}</td>
<td>–</td>
</tr>
<tr>
<td>$x \sin \phi$ from $D^0 \rightarrow K^+\pi^-$</td>
<td>13×10^{-4}</td>
<td>3.2×10^{-4}</td>
<td>4.6×10^{-4}</td>
<td>8.0×10^{-5}</td>
<td>–</td>
</tr>
<tr>
<td>$x \sin \phi$ from multibody decays</td>
<td>–</td>
<td>$(K3\pi)$ 4.0×10^{-5}</td>
<td>$(K_{s0}^0\pi\pi)$ 1.2×10^{-4}</td>
<td>$(K3\pi)$ 8.0×10^{-6}</td>
<td>–</td>
</tr>
</tbody>
</table>
Increased sensitivity to unitarity triangle parameters
Can assess tree-level observables against (NP-sensitive) loop-level contributions

CKM tests

- γ, with $B_s^0 \to D_s^+ K^-$
 - $(+17)_o$
 - $(-5.8)_o$

- γ, all modes
 - 4^o
 - 1.5^o
 - 1.5^o
 - 0.35^o

<table>
<thead>
<tr>
<th>Observable</th>
<th>LHCb Upgrade II</th>
<th>ATLAS & CMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_K ($1 < q^2 < 6 \text{GeV}^2 c^4$)</td>
<td>-</td>
<td>0.007</td>
</tr>
<tr>
<td>R_{K^*} ($1 < q^2 < 6 \text{GeV}^2 c^4$)</td>
<td>-</td>
<td>0.008</td>
</tr>
<tr>
<td>$R_{\phi}, R_{\rho K}, R_{\pi}$</td>
<td>0.08, 0.06, 0.18</td>
<td>0.02, 0.02, 0.05</td>
</tr>
</tbody>
</table>

Charm

- $\Delta A_{CP}(K K - \pi\pi)$
 - 8.5×10^{-4}
 - 1.7×10^{-4}
 - 5.4×10^{-4}
 - 3.0×10^{-5}

- $A_T (~ x \sin \phi)$
 - 2.8×10^{-4}
 - 4.3×10^{-5}
 - 3.5×10^{-4}
 - 1.0×10^{-5}

- $x \sin \phi$ from $D^0 \to K^+ \pi^-$
 - 13×10^{-4}
 - 3.2×10^{-4}
 - 4.6×10^{-4}
 - 8.0×10^{-5}

- $x \sin \phi$ from multibody decays
 - $(K^0 \pi \pi)$ 4.0×10^{-5}
 - $(K^0_\pi \pi \pi)$ 1.2×10^{-4}
 - $(K_\pi \pi)$ 8.0×10^{-6}
LHCb Upgrade II

Reach of Upgrade II factor ~2 higher than Upgrade I
Sensitivity up to $\Lambda_{NP} = 100$ TeV

Includes K*ll angular analyses
SUMMARY

- LHCb operating well in the final few months of data-taking in Run 2
 - New and more complex analyses constantly being added to physics program
- Preparation for LHCb upgrade I proceeding well
 - LS2 dismantling/installation workshop held in May, schedule in place
 - First draft of computing model TDR circulated
 - Multi-system test beam planned for October
- LHCb Upgrade II will ~double the new physics scale probed compared to pre HL-LHC
 - Widen the set of observables under study to search for and characterise new physics
 - Strong programme beyond flavour exploiting unique acceptance
- Physics case document submitted on August 27
BACKUP
Several cross-checks performed:

- s-weighted distributions for $\Omega_c^0 \mu^-$ mass, pT decay time compared with data to check selection of semi-leptonic Ω_b^0 decays; good agreement found.
- Lifetime measurement performed with Ω_c^0 mass sideband subtraction, good agreement with result obtained from sPlot method.
- Lifetime study with independent sample of Ω_c^0 decays collected at 13 TeV center-of-mass energy performed, result consistent with this analysis.
- Method also used to measure D^0 meson lifetime from a sample of $\sim 88,000$ $B \rightarrow D^0(\rightarrow K^+K^-\mu^+\mu^-)\mu X$ decays; result consistent
- Consistent values obtained with with tighter BDT selection criteria or tighter PID requirements.
Trigger system:

Initial hardware trigger (L0), using information from calorimeters and muon system.

Software trigger split into two stages: fast partial event reconstruction + subsequent full reco.

Low luminosity → can trigger on relatively low pT objects.
• Software-only trigger in the upgrade
 • Current L0 hardware trigger to be removed
• Must fully process events at 30 MHz
 • Information needed from all sub-detectors at initial trigger stage
• Events stored in buffer, for online alignment, calibration
 • Will be able to trigger on signatures with large impact parameters, high p_T
• Event sized reduced to write to disk at 2-5 Gb/s
VELO challenges in Run 3:
- Retain high vertex and track reco. efficiency with ~ 5x increase in interactions per bunch crossing
- Increased radiation (order of magnitude higher than current doses), highly non-uniform

- Use silicon hybrid pixels
- 52 modules, two retractable halves
 - Innermost sections ~5.1 mm from beam pipe
 - 4 silicon sensors per module, 55 μm x 55 μm
UPGRADE I - VELO

• Pixel VELO ASIC front-end readout chip
 • 3 chips bump-bonded to each sensor

• Sensor+readout electronics mounted on cooling substrate
 • Sensor temperature maintained at -20 C, novel technique of evaporated CO$_2$ cooling in substrate micro-channels
 • Minimal material within acceptance

• VELO separated from primary vacuum by 1.1 m long thin RF foil
 • New foil thinned to 250 µm
 • Withstands pressure variations of 10 mbar
Upgrade I - UT

- Four-layer silicon strip detector
 - Finer granularity, innermost sensors closer to beam pipe
 - Inner layers tilted by a stereo angle (±5%)
- Four different types of sensors
- Mounted to lightweight staves (10 cm wide, 1.6 m long)
- Novel readout chip (SALT ASIC)
Upgrade I - SciFi

- 3 x 4 layers of scintillating fiber mats
- Each mat with 6 layers of fibres
- 8 mats assembled into a module
- 11,000 km of fibres in total
- Coverage up to 3m from the beam pipe
- Single photon efficiency ~99%

- Fibres manufactured by Kuraray (Japan)
 - Double-clad plastic scintillating fibre
 - Core: polystyrene base + activator + wavelength shifting dye
 - Attenuation length ~ 3.5m, light emissions peak ~ 450 nm
• Fibre QA done at CERN
 • Spools from manufacturer scanned for mechanical defects
 • Bumps above threshold removed with a ‘hot drawing' tool
• Mats assembled with custom winding machine
 • Second fibre QA performed
• Mats aligned within 50 μm over 5 m length using alignment pins
Fibre readout provided by silicon photo-multipliers

- 128-channel SiPM arrays, channel size 250 um
- Cooled to -40°C to minimize dark count rate after high irradiation
- Photon detection efficiency ~ 45%
- SiPM signal processed by custom 64-channel PACIFIC ASIC chip
- Zero suppression + clustering on FPGAs (clusterisation boards)
• New glass flat mirrors for RICH1 (better photon yield)
 • Focal plane, optics modified to increase size of Cherenkov rings
• Photo-detectors to be upgraded
 • Two types of multi-anode photomultiplier tubes (MaPMTs) with finer granularity
• Readout electronics updated to allow for data-taking at 40 MHz
• Single photon angular resolution improved by 50% (RICH1), 20% (RICH2)
Upgrade I - Calo+Muon

- Current calorimeters will be kept for Run 3
 - Front-end electronics rebuilt
 - SPD/PS removed
- PMT gain reduced by a factor of 5 to reduce degradation
- To compensate, the front-end gain is increased by the same factor
 - Custom low-noise FE ASIC developed
- Reconstruction improved for higher occupancy environment
- Muon detector electronics also upgraded during LS2
 - First GEM layer to be removed
 - 36 new PAD chambers to be installed in inner region