The Search for Light Sterile Neutrinos & The Short Baseline Neutrino Program

M. Toups Fermi National Accelerator Laboratory

LPC Physics Forum 8/23/2018

3-Flavor Neutrino Oscillations

$$|\nu_{\alpha}\rangle = \sum_{i} U_{\alpha i}^{*} |\nu_{i}\rangle$$

Neutrino Flavor Eigenstates

Unitary Neutrino Mass Mixing Matrix Eigenstates

$$|
u_{lpha}(L)
angle pprox \sum_{i} U^*_{lpha i} e^{-i(m_i^2/2E)L} |
u_i
angle$$

NuFit 3.2 (2018) JHEP 01 (2017) 087

$$U_{\alpha i} = \begin{pmatrix} |c_{12}c_{13}| & |s_{12}c_{13}| & |s_{3}e^{i\delta}| \\ |-s_{12}c_{23}-c_{12}s_{23}s_{3}s_{3}e^{i\delta}| & |c_{12}c_{23}-s_{12}s_{23}s_{3}s_{3}e^{i\delta}| & |s_{23}c_{3}| \\ |s_{12}s_{23}-c_{12}c_{23}s_{3}s_{3}e^{i\delta}| & |-c_{12}s_{23}-s_{12}c_{23}s_{3}s_{3}e^{i\delta}| & |c_{23}c_{3}| \end{pmatrix} = \begin{pmatrix} 0.799 \rightarrow 0.844 & 0.516 \rightarrow 0.582 & 0.141 \rightarrow 0.156 \\ 0.242 \rightarrow 0.494 & 0.467 \rightarrow 0.678 & 0.639 \rightarrow 0.774 \\ 0.284 \rightarrow 0.521 & 0.490 \rightarrow 0.695 & 0.615 \rightarrow 0.754 \end{pmatrix}$$

$$\Delta m_{21}^2 = \mathbf{7.40}_{-0.20}^{+0.21} \times 10^{-5} \text{eV}^2$$
$$|\Delta m_{32}^2| = +2.494_{-0.031}^{+0.033} \times 10^{-3} \text{eV}^2$$

M. Toups

LPC Physics Forum

2

Daya Bay As A Case Study

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2(2\theta_{13}) \sin^2\left(\frac{1267\Delta m^2 [\text{eV}^2]L \text{ [km]}}{E_{\nu} \text{ [MeV]}}\right)$$

KamLAND As A Case Study

$$P(\bar{\nu}_e \to \bar{\nu}_e) \approx 1 - \sin^2(2\theta_{12}) \sin^2\left(\frac{1267\Delta m^2 [\text{eV}^2]L \text{ [km]}}{E_{\nu} \text{ [MeV]}}\right)$$

LPC Physics Forum

The LSND Experiment

LPC Physics Forum

Interpreting the Excess as Oscillations

KARMEN Experiment

- Pulsed spallation neutron source
 - Muon decay at rest beam
 - Small duty factor —> cosmic rejection
- Detector 100 degrees of axis at a mean distance of 17.7 m
- Fundamentally, KARMEN does not see the excess of antielectron neutrinos that LSND sees in its decay-at-rest beam

LPC Physics Forum

Additional Neutrino States

3+1 Sterile Neutrino Model

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix} |U_{e4}| = \sin \theta_{14} \\ |U_{\mu 4}| = \cos \theta_{14} \sin \theta_{24} \\ |U_{\tau 4}| = \cos \theta_{14} \cos \theta_{24} \sin \theta_{34}$$

 $\begin{array}{ll} \underline{Short\ baseline\ approximation:}} & \Delta m_{32}^2 = \Delta m_{31}^2 = \Delta m_{21}^2 = 0 \\ & P(\nu_{\alpha} \rightarrow \nu_{\beta}) \simeq 4 |U_{\alpha 4}|^2 |U_{\beta 4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E) \\ & P(\nu_{\alpha} \rightarrow \nu_{\alpha}) \simeq 1 - 4(1 - |U_{\alpha 4}|^2) |U_{\alpha 4}|^2 \sin^2(1.27\Delta m_{41}^2 L/E) \\ & \text{If } |U_{\alpha 4}|, |U_{\beta 4}| << 1, \text{ then } P(\nu_{\alpha} \rightarrow \nu_{\beta}) \simeq \frac{1}{4}(1 - P(\nu_{\alpha} \rightarrow \nu_{\alpha}))(1 - P(\nu_{\beta} \rightarrow \nu_{\beta})) \\ & \text{M. Toups} \end{array}$

Why Use a 3+1 Model?

- Simple model extending 3-v oscillation framework to include short baseline v_{e} appearance
 - Rich phenomenology: v_{μ} dis., v_{τ} app., v_{e} dis.
- Contains only a few free parameters, which can be over-constrained by experimental measurements at different L/E
 - Predictive, testable model containing new fundamental particles
- Not necessarily the model that describes nature or best fits global data
 - May be part of a more complex model
 - Nonetheless, provides a common benchmark to compare experimental sensitivities

MiniBooNE Appearance Experiment

MiniBooNE "Low Energy Excess"

M. Toups

LPC Physics Forum

New MiniBooNE Result

arXiv:1805.12028

M. Toups

LPC Physics Forum

14

New MiniBooNE Result

Reactor Neutrino Anomaly

Phys. Rev. D 83, 073006 (2011)

Very short baseline reactor experiments measure fewer neutrinos than predicted

----> Can be interpreted as oscillations into a sterile neutrino

Problems with the Reactor Flux

Phys. Rev. Lett. 118, 251801 (2017)

Data-to-data ratios don't completely rule sterile out

Deficits also observed from ν_e calibration sources in Gallium-based solar neutrino experiments

Modest Tension

v_µ Disappearance with Ice Cube

v_{μ} Disappearance with Long Baseline Experiments

v_µ Disappearance MINOS/MINOS+

v_µ Disappearance Allowed Regions

Bottom Line for 3+1 Models

Addressing the MiniBooNE "Low-Energy Excess"

M. Toups

LPC Physics Forum

LPC Physics Forum

Trio of LArTPCs on the Booster Neutrino Beam (BNB)

M. Toups

LPC Physics Forum

Trio of LArTPCs on the Booster Neutrino Beam (BNB)

SBN v_{μ} Disappearance Sensitivity

34

ICARUS

Detector installation underway Planned data-taking 2019

SBND

Detector construction underway Planned data-taking 2020

MicroBooNE Status

- LArTPCs are still a relatively new technology for neutrino physics
 - Building a robust foundation before releasing low energy excess results (see <u>http://microboone.fnal.gov/documents-publications/</u>)
- Understand our detector
- Understand neutrino interactions on argon
 - Identify neutrino vertices and study track multiplicities
 - Develop an inclusive v_μ CC cross section measurement as a basis for further exclusive channel measurements
 - $v_{\mu} C C \pi^0$
 - $v_{\mu} C C \pi^+$
 - v_{μ} CC + N protons
 - etc

M. Toups

LPC Physics Forum

MicroBooNE: First Physics Results

Conclusions

- The search for light sterile neutrinos in accelerator-based short baseline neutrino experiments are driven by experimental "anomalies"
- Fundamentally, these are an excess of candidate v_e and \overline{v}_e events seen in decay-at-rest and decay-in-flight neutrino beams over short baselines
 - v_e appearance measurements are essential to understanding the nature of these excesses
- Searches for other oscillation modes play a key role in constraining sterile neutrino and other types of exotic models
- Ongoing and upcoming efforts such as the short baseline neutrino program at Fermilab will provide definitive statements on the existence of a light sterile neutrino in the coming years

End

M. Toups

LPC Physics Forum

