THE ANITA ANOMALOUS EVENTS AND LHC LLPS

DEREK B. FOX PENN STATE UNIVERSITY

ArXiv:1809.09615

FOURTH WORKSHOP OF THE LHC LLP COMMUNITY SCIENCE PARK, AMSTERDAM 23 OCTOBER 2018

ANITA ANOMALOUS EVENTS AND LHC LLPS

- 1. What are the ANITA Anomalous Events?
- 2. AAEs and the Standard Model
- 3. More Pieces of the Puzzle
- 4. AAEs and LHC LLPs

1. WHAT ARE THE ANITA ANOMALOUS EVENTS?

 NASA "Ultra Long Duration Balloon" experiment

- NASA "Ultra Long Duration Balloon" experiment
- Seeking radio signature of UHE Earth-skimming neutrinos in ice (Askaryan)

- NASA "Ultra Long Duration Balloon" experiment
- Seeking radio signature of UHE Earth-skimming neutrinos in ice (Askaryan)
- Months-long flights "orbiting" Antarctica

- NASA "Ultra Long Duration Balloon" experiment
- Seeking radio signature of UHE Earth-skimming neutrinos in ice (Askaryan)
- Months-long flights "orbiting" Antarctica
- 4 flights to-date with three flights published

- NASA "Ultra Long Duration Balloon" experiment
- Seeking radio signature of UHE Earth-skimming neutrinos in ice (Askaryan)
- Months-long flights "orbiting" Antarctica
- 4 flights to-date with three flights published
- One candidate Askaryan event from talks (not published)

Romero-Wolf+15

ANITA detects radio pulses from reflected CRs (blue)

- ANITA detects radio pulses from reflected CRs (blue)
- ANITA detects radio pulses from directly-observed CRs just above Earth limb (red)

- ANITA detects radio pulses from reflected CRs (blue)
- ANITA detects radio pulses from directly-observed CRs just above Earth limb (red)
- * ANITA Anomalous Events manifest as direct CRs from steep zenith angles (purple)

- ANITA detects radio pulses from reflected CRs (blue)
- ANITA detects radio pulses from directly-observed CRs just above Earth limb (red)
- * ANITA Anomalous Events manifest as direct CRs from steep zenith angles (purple)
- Straightforwardly: Upgoing
 ~0.6 EeV CR showers

- ANITA detects radio pulses from reflected CRs (blue)
- ANITA detects radio pulses from directly-observed CRs just above Earth limb (red)
- * ANITA Anomalous Events manifest as direct CRs from steep zenith angles (purple)
- Straightforwardly: Upgoing
 ~0.6 EeV CR showers
- …except that's impossible (under the SM)

- ANITA detects radio pulses from reflected CRs (blue)
- ANITA detects radio pulses from directly-observed CRs just above Earth limb (red)
- * ANITA Anomalous Events manifest as direct CRs from steep zenith angles (purple)
- Straightforwardly: Upgoing
 ~0.6 EeV CR showers
- …except that's impossible (under the SM)

Gorham+18

Gorham+18

2. AAES AND THE STANDARD MODEL

Alvarez-Muniz+18

Alvarez-Muniz+18

SM explanations for AAEs excluded on at least two grounds:

Alvarez-Muniz+18

- SM explanations for AAEs excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds from Pierre Auger & IceCube

Alvarez-Muniz+18

- SM explanations for AAEs excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds from Pierre Auger & IceCube
- 2. AAE Zenith Angle distribution

Alvarez-Muniz+18

- SM explanations for AAEs excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds from Pierre Auger & IceCube
- 2. AAE Zenith Angle distribution

IceCube+18

TABLE I. Properties of the ANITA Anomalous Events

Property	AAE 061228	AAE 141220	
Flight & Event	ANITA-I #3985267	ANITA-III #15717147	
Date & Time (UTC)	2006-12-28 00:33:20	2014-12-20 08:33:22.5	
Equatorial coordinates (J2000)	R.A. 282°.14064, Dec. $+20°.33043$	R.A. 50°.78203, Dec. $+38°.65498$	
Energy $\varepsilon_{\rm cr}$	$0.6\pm0.4\mathrm{EeV}$	$0.56^{+0.30}_{-0.20}{ m EeV}$	
Zenith angle z'/z	$117.4 \ / \ 116.8 \pm 0.3$	$125^{\circ}.0~/~124^{\circ}.5\pm0^{\circ}.3$	
Earth chord length ℓ	$5740\pm60\mathrm{km}$	$7210\pm55\mathrm{km}$	
Mean interaction length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$290\mathrm{km}$	$265\mathrm{km}$	
$p_{ m SM}(arepsilon_{ au}>0.1{ m EeV}) ext{ for } arepsilon_{ u}=1{ m EeV}$	$4.4 imes 10^{-7}$	$3.2 imes10^{-8}$	
$p_{ m SM}(z>z_{ m obs}) { m ~for} ~ arepsilon_{ u} = 1 { m ~EeV}, ~ arepsilon_{ au} > 0.1 { m ~EeV}$	$6.7 imes10^{-5}$	$3.8 imes10^{-6}$	
$n_{ au}(110{ m PeV}):n_{ au}(10100{ m PeV}):n_{ au}(>0.1{ m EeV})$	34:35:1	270:120:1	

Fox+18, ArXiv:1809.09615

AAE ZENITH ÅNGLES

Fox+18, ArXiv:1809.09615

Alvarez-Muniz+18

SM explanations for AAEs excluded on at least two grounds:

Alvarez-Muniz+18

- SM explanations for AAEs
 excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds (7.0σ)

Alvarez-Muniz+18

- SM explanations for AAEs
 excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds (7.0σ)
- AAE Zenith Angle distribution (5.8σ)

Alvarez-Muniz+18

- SM explanations for AAEs
 excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds (7.0σ)
- AAE Zenith Angle distribution (5.8σ)
- Apart from chord lengths, though, events look good!

Alvarez-Muniz+18

- SM explanations for AAEs
 excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds (7.0σ)
- AAE Zenith Angle distribution (5.8σ)
- Apart from chord lengths, though, events look good!

All ANITA observables

Alvarez-Muniz+18

- SM explanations for AAEs
 excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds (7.0σ)
- AAE Zenith Angle distribution (5.8σ)
- Apart from chord lengths, though, events look good!
 - All ANITA observables
 - * Energies ~ $E_{crit,\tau}$ as expected for all higher-energy ν_{τ}

Alvarez-Muniz+18

- SM explanations for AAEs excluded on at least two grounds:
- UHE Diffuse Neutrino Flux bounds (7.0σ)
- AAE Zenith Angle distribution (5.8σ)
- Apart from chord lengths, though, events look good!
 - # All ANITA observables
 - * Energies ~ $E_{crit,\tau}$ as expected for all higher-energy ν_{τ}
 - * Tau / ν_{τ} regeneration maxes out at ~1000 km

Alvarez-Muniz+18

TABLE I. Properties of the ANITA Anomalous Events

Property	AAE 061228	AAE 141220	
Flight & Event	ANITA-I #3985267	ANITA-III #15717147	
Date & Time (UTC)	2006-12-28 00:33:20	2014-12-20 08:33:22.5	
Equatorial coordinates (J2000)	R.A. 282°.14064, Dec. $+20°.33043$	R.A. $50^{\circ}.78203$, Dec. $+38^{\circ}.65498$	
Energy $\varepsilon_{\rm cr}$	$0.6\pm0.4\mathrm{EeV}$	$0.56^{+0.30}_{-0.20}{ m EeV}$	
Zenith angle z'/z	$117.4 \ / \ 116.8 \pm 0.3$	$125^{\circ}.0~/~124^{\circ}.5\pm0^{\circ}.3$	
Earth chord length ℓ	$5740\pm60\mathrm{km}$	$7210\pm55\mathrm{km}$	
Mean interaction length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$290\mathrm{km}$	$265\mathrm{km}$	
$p_{ m SM}(arepsilon_{ au}>0.1{ m EeV}) ext{ for } arepsilon_{ u}=1{ m EeV}$	$4.4 imes 10^{-7}$	$3.2 imes10^{-8}$	
$p_{ m SM}(z>z_{ m obs}) { m ~for} ~ arepsilon_{ u} = 1 { m ~EeV}, ~ arepsilon_{ au} > 0.1 { m ~EeV}$	$6.7 imes10^{-5}$	$3.8 imes10^{-6}$	
$n_{ au}(110{ m PeV}):n_{ au}(10100{ m PeV}):n_{ au}(>0.1{ m EeV})$	34:35:1	270:120:1	

Fox+18, ArXiv:1809.09615

3. MORE PIECES OF THE PUZZLE

• \ .	High	-energy	neutrinos,
	$\varepsilon_{\nu} \gtrsim$	$1 { m TeV}$	

- * High-energy neutrinos, $\varepsilon_{\nu} \gtrsim 1 \text{ TeV}$
- Gigaton detectors IceCube (km³), ANTARES (5% km³), KM3NET (in-progress km³)

- * High-energy neutrinos, $\varepsilon_{\nu} \gtrsim 1 \text{ TeV}$
- Gigaton detectors IceCube (km³), ANTARES (5% km³), KM3NET (in-progress km³)
- Observe through Earth(upgoing) or from sky (down)

- * High-energy neutrinos, $\varepsilon_{\nu} \gtrsim 1 \text{ TeV}$
- Gigaton detectors IceCube (km³), ANTARES (5% km³), KM3NET (in-progress km³)
- Observe through Earth(upgoing) or from sky (down)
- Backgrounds: Atmospheric neutrinos, muons (down only)

- * High-energy neutrinos, $\varepsilon_{\nu} \gtrsim 1 \text{ TeV}$
- Gigaton detectors IceCube (km³), ANTARES (5% km³), KM3NET (in-progress km³)
- Observe through Earth(upgoing) or from sky (down)
- Backgrounds: Atmospheric neutrinos, muons (down only)
- * Tracks (c.c. muon, ~deg) and Cascades (other, >15 deg)

Track ~1°

Cascade ~15°

"HIDDEN TAU" EVENTS

Multi-PeV Signals from a New Astrophysical Neutrino Flux Beyond the Glashow Resonance

Matthew D. Kistler^{1,*} and Ranjan Laha^{2,1,†}

¹Kavli Institute for Particle Astrophysics and Cosmology, Department of Physics, Stanford University, Stanford, California 94035 and SLAC National Accelerator Laboratory, Menlo Park, California 94025 ²PRISMA Cluster of Excellence and Mainz Institute for Theoretical Physics, Johannes Gutenberg-Universität Mainz, 55099 Mainz, Germany (Dated: June 27, 2018)

The IceCube neutrino discovery was punctuated by three showers with $E_{\nu} \approx 1-2$ PeV. Interest is intense in possible fluxes at higher energies, though a deficit of $E_{\nu} \approx 6$ PeV Glashow resonance events implies a spectrum that is soft and/or cutoff below ~ few PeV. However, IceCube recently reported a through-going track depositing 2.6 ± 0.3 PeV. A muon depositing so much energy can imply $E_{\nu_{\mu}} \gtrsim 10$ PeV. Alternatively, we find a tau can deposit this much energy, requiring $E_{\nu_{\tau}} \sim 10 \times$ higher. We show that extending soft spectral fits from TeV–PeV data is unlikely to yield such an event, while an $\sim E_{\nu}^{-2}$ flux predicts excessive Glashow events. These instead hint at a new flux, with the hierarchy of ν_{μ} and ν_{τ} energies implying astrophysical neutrinos at $E_{\nu} \sim 100$ PeV if a tau. We address implications for ultrahigh-energy cosmic-ray (UHECR) and neutrino origins.

PACS numbers: 98.70.-f, 98.70.Rz, 98.70.Sa, 95.85.Ry

Kistler & Laha 2018

IceCube-140611

IceCube 2016

CANDIDATE ÁNALOG EVENTS FROM ICECUBE

Fox+18, ArXiv:1809.09615

ICECUBE ÁNOMALOUS EVENT CANDIDATES

TABLE II. Properties of IceCube Anomalous Track Events					
Property	IceCube-140611	IceCube-140109	IceCube-121205		
EHE Northern Track ID	#27	#24	#20		
Date & Time (UTC or MJD)	2014-06-11 04:54:24	56666.5	56266.6		
Equatorial coordinates (J2000)	R.A. $110^{\circ}.34 \pm 0^{\circ}.22$,	R.A. 293°29,	R.A. 169°61,		
	Dec. $+11.42 \pm 0.08$	Dec. $+32^{\circ}.82$	Dec. $+28^{\circ}.04$		
Zenith angle z	$101^{\circ}.42$	$122^{\circ}_{\cdot}82$	118°04		
Earth chord length ℓ	$2535\mathrm{km}$	$6910\mathrm{km}$	$5990\mathrm{km}$		
As muon: $\varepsilon_{\mu,\text{obs}}$ ($\varepsilon_{\text{proxy}}$)	$4.45\mathrm{PeV}$	$0.85\mathrm{PeV}$	$0.75\mathrm{PeV}$		
$\varepsilon_{ u} \ (\mathrm{median})$	$8.7\mathrm{PeV}$	$1.65\mathrm{PeV}$	$1.45\mathrm{PeV}$		
Mean interaction length for ε_{ν}	1960 km	$3280\mathrm{km}$	$3690\mathrm{km}$		
$p(arepsilon > arepsilon_{ m obs})$	$4.0 imes 10^{-3}$	$6.9 imes10^{-2}$	$8.6 imes10^{-2}$		
$p(z>z_{ m obs} arepsilon)$	$1.5 imes10^{-1}$	$5.0 imes 10^{-2}$	$8.8 imes 10^{-2}$		
$p_{ m joint}$	$4.9 imes 10^{-3}$	$2.3 imes10^{-2}$	$4.5 imes 10^{-2}$		
As tau: $\varepsilon_{\tau,\text{obs}}$ (median)	$70\mathrm{PeV}$	$13\mathrm{PeV}$	$12{ m PeV}$		
Mean interaction length for $\varepsilon_{\nu} = 1 \mathrm{EeV}$	$340\mathrm{km}$	$270\mathrm{km}$	$285\mathrm{km}$		
$p_{ m SM}(arepsilon_{ au} > arepsilon_{ au, m obs}) ext{ for } arepsilon_{ u} = 1 { m EeV}$	$2.2 imes 10^{-4}$	$3.8 imes10^{-6}$	$1.0 imes 10^{-5}$		
$p_{ m SM}(z>z_{ m obs}) ext{ for } arepsilon_ u = 1 { m EeV}, arepsilon_ au > arepsilon_{ au, m obs}$	$5.0 imes 10^{-3}$	$4.5 imes 10^{-5}$	$1.8 imes 10^{-4}$		

Fox+18, ArXiv:1809.09615

CASCADES V. TRACKS

IceCube 2018

 Albuquerque, Burdman, & Chacko 2004: "Dual Stau" track events in neutrino observatories

- Albuquerque, Burdman, & Chacko 2004: "Dual Stau" track events in neutrino observatories
- Ando, Beacom, Profumo, & Rainwater 2008:
 Event rates & zenith angles for Stau events

- Albuquerque, Burdman, & Chacko 2004: "Dual Stau" track events in neutrino observatories
- Ando, Beacom, Profumo, & Rainwater 2008:
 Event rates & zenith angles for Stau events
- Albuquerque & Cavalcante de Souza 2012:
 Stau → Tau events in neutrino observatories

- Albuquerque, Burdman, & Chacko 2004: "Dual Stau" track events in neutrino observatories
- Ando, Beacom, Profumo, & Rainwater 2008:
 Event rates & zenith angles for Stau events
- Albuquerque & Cavalcante de Souza 2012:
 Stau → Tau events in neutrino observatories
- Albuquerque & Cavalcante de Souza 2013:
 Upgoing UHECRs from Stau → Tau decays

$$c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$

$$c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{E_{\tilde{\tau}_R}}{m_{\tilde{\tau}_R}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$

$$c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{E_{\tilde{\tau}_R}}{m_{\tilde{\tau}_R}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{10^9 \text{ GeV}}{500 \text{ GeV}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{500 \text{ GeV}}\right)^5 10 \text{ km}$$

$$c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{E_{\tilde{\tau}_R}}{m_{\tilde{\tau}_R}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{10^9 \text{ GeV}}{500 \text{ GeV}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{500 \text{ GeV}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{2 \times 10^6}{3125}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{500 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^6 10 \text{ km}$$

$$c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{E_{\tilde{\tau}_R}}{m_{\tilde{\tau}_R}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{10^9 \text{ GeV}}{500 \text{ GeV}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{500 \text{ GeV}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{2 \times 10^6}{3125}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{500 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^6 10 \text{ km}$$

$$\gamma c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{500 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^6 6400 \text{ km}$$

$$c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{E_{\tilde{\tau}_R}}{m_{\tilde{\tau}_R}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{10^9 \text{ GeV}}{500 \text{ GeV}}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{100 \text{ GeV}}{500 \text{ GeV}}\right)^5 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{2 \times 10^6}{3125}\right) \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{500 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^6 10 \text{ km}$$
$$\gamma c\tau = \left(\frac{\sqrt{F}}{10^7 \text{ GeV}}\right)^4 \left(\frac{500 \text{ GeV}}{m_{\tilde{\tau}_R}}\right)^6 6400 \text{ km}$$

CMS 2016

CMS 2016

 CMS search for heavy stable charged particles with 12.9 fb⁻¹ of 2016 data

CMS 2016

- CMS search for heavy stable charged particles with 12.9 fb⁻¹ of 2016 data
- * "One event with mass 510 ± 160 GeV is found in the tracker + TOF analysis."

CMS 2016

- CMS search for heavy stable charged particles with 12.9 fb⁻¹ of 2016 data
- * "One event with mass 510 ± 160 GeV is found in the tracker + TOF analysis."
- Please keep doing what you're doing!

CMS 2016

ANITA ANOMALOUS EVENTS & LHC LLPS

- ANITA has observed two anomalous events in flight over Antarctica
- Interpreted as Sub-EeV Earth-emergent Cosmic Rays (SEECRs), these require the existence of a long-lived BSM particle
- Independent support for SEECR hypothesis from IceCube
- * Theoretical precedents point to SUSY NLSP "stau"
 - * Relatively long lifetime
 - * Decays to tau lepton + LSP
 - * Intermediate cross section (?) allowing *both* production in UHE neutrino interactions *and* deep penetration through Earth
 - * Potential support from CMS?
- Confirmation of SEECR phenomena may be possible with existing archival data from IceCube and Pierre Auger Observatories

QUESTIONS

- Can we talk about the 510 ± 160 GeV CMS event? What are the SM backgrounds?
- Can we have updated cross sections and lifetimes incorporating known constraints on Stau as well as associated LSP(s)
- Especially interested in SUSY scenarios that generate Dark Matter in proper abundance, e.g. SuperWIMP scenarios (let us avoid closing the Universe with overmassive gravitino)
- With proper inputs (ranges of inputs) we can test these models against ANITA and IceCube data today!
- And explore a surprising window onto UHE neutrino sky!)

- What if ANITA events aren't real?
 - # 4 years since first publication
 - ** Not instrumental definitely at least atmospheric
 - RFI seems wildly unlikely
 - # Hypothetical "double bounce" events never seen from pulser
- How can we confirm the SEECR interpretation?
 - IceCube particle mass diagnostics
 - Pierre Auger fluorescence detector data
 - Other?

THE END