Future pp colliders and experiments

Filip Moortgat (CERN)

- Parameters & design challenges for future pp colliders
- A possible layout for an experiment
- Some LLP physics examples

This presentation contains material from:

Michael Benedikt, Daniel Schulte, Werner Riegler, Michelangelo Mangano Martin Aleksa, Ana Henriques, Clement Helsens, Jana Faltova, Coralie Neubüser, Anna Zaborowska, Phil Allport, Sergei Chekanov Jim Brooke, Simone Bologna, Ilaria Besana, Francesco Cerutti Zbynek Drasal, Estel Perez Codina, Philipp Roloff, Lucie Lienssen, Konrad Elsener, Herman Ten Kate, Matthias Mentink, Helder Pais da Silva, Erwin Roland Bielert Michele Selvaggi, Heather Gray, Phil Harris, Tristan du Pree, Ryu Sawada, Shoji Asai, Masahiko Saito, Koji Terashi, Loukas Gouskos, Benedikt Hegner, Andreas Salzburger, Julia Hrdinka, Valentin Volkl, Joschka Lingemann

and others ...

Future Circular Collider Study – SCOPE

Since 2014: international collaboration to study

pp-collider (*FCC-hh*)
 → main emphasis,
 defining infrastructure

~16 T \Rightarrow 100 TeV *pp* in 100 km ~20 T \Rightarrow 100 TeV *pp* in 80 km

- 80-100 km infrastructure in Geneva area
- e⁺e⁻ collider (FCC-ee) as potential intermediate step
- p-e (FCC-he) option

FCC-hh integration and options

LHC 27 km, 8.33 T 14 TeV (c.m.)

hh ee he

FCC-hh (alternative) 80 km, **20 T** 100 TeV (c.m.)

FCC-hh (baseline) 100 km, **16 T** 100 TeV (c.m.)

The name of the game of a hadron collider is energy reach

 $\mathbf{E} \propto \mathbf{B}_{dipole} \mathbf{x} \, \rho_{bending}$

Cf. LHC: factor 3-4 in radius, factor 2 in field → factor 7-8 E

→ 100 TeV

- Access to new particles (direct production) in the few TeV to 30 TeV mass range, far beyond LHC reach.
- Much-increased rates for phenomena in the sub-TeV mass range →increased precision w.r.t. LHC and possibly ILC

Hadron collider comparison

parameter	FCC	hh	HE-LHC	HL-LHC	LHC
collision energy cms [TeV]	100)	27	14	14
dipole field [T]	16		16	8.33	8.33
circumference [km]	97.7	′5	26.7	26.7	26.7
beam current [A]	0.5	5	1.12	1.12	0.58
bunch intensity [10 ¹¹]	1	1 (0.2)	2.2 (0.44)	2.2	1.15
bunch spacing [ns]	25	25 (5)	25 (5)	25	25
synchr. rad. power / ring [kW]	240	0	101	7.3	3.6
SR power / length [W/m/ap.]	28.	4	4.6	0.33	0.17
long. emit. damping time [h]	0.5	4	1.8	12.9	12.9
beta* [m]	1.1	0.3	0.25	0.20	0.55
normalized emittance [µm]	2.2 (0).4)	2.5 (0.5)	2.5	3.75
peak luminosity [10 ³⁴ cm ⁻² s ⁻¹]	5 30		25	5	1
events/bunch crossing	170	1k (200)	~800 (160)	135	27
stored energy/beam [GJ]	8.4		1.3	0.7	0.36

Luminosity assumptions

The present working hypothesis for FCC-hh is:

- peak luminosity baseline: 5x10³⁴
- peak luminosity ultimate: ≤ 30x10³⁴
- integrated luminosity baseline ~250 fb⁻¹ (average per year)
- integrated luminosity ultimate ~1000 fb⁻¹ (average per year)

Total integrated luminosity: 20 ab⁻¹

For HE-LHC:

- peak luminosity: 25x10³⁴

Total integrated luminosity: 15 ab⁻¹

Site study 97.5 km baseline

Alignment Shafts	Query		Alignment	Location				Geolo	gy Inter	sected by SI	nafts Sł	haft Depths				Optimization in view of
Choose alignment option			+			\sum	W all	Reint	Actual	Sh	aft Depth (m)	Gustaraan	Majages	Geolo	gy (m)	optimisation in view of accessibility surface points
Tunnel elevation at centre	e:322mASL		1 – 1			C		A	152	Molasse SA	Wilditysch 0	Quaternary	152	orgonia	n Lines	turne l'anne de turne
Grad. Params				Py				в	121							tunneling rock type,
Azim	uth (*): -3	23.5	*					с	127							shaft depth_etc
Slope Angle	x-x(%): 0),3				7		D	205							onalt doptil, oto:
Slope Angle	у-у(%): 0).08		A CARA		C SAN	1 Contraction	E	89							
LOAD	C	ALCULATE			1. 18/	- 4	Sec. 2 .	F	476							Tunneling
Alignment centre	V: 1107	7760	1. Same	NA D	2		Contraction of the	ы	307							
CP 1	1	CP 2		N N		E//	ALX -	1	198							 Iviolasse 90%,
Angle Depth	Angle	Depth	Parties -	11	P H S	10	Ear a	L	248							Limestone 5%
LHC 37° 49m	-40°	83m					and the same	к	88							Marainaa E9/
TI2 121n	n	126m		an a	Sector 6		and -	L	172	0	0	89	83	0		Woraines 5%
TI8 51m	1	118m	C 30.067 1					Total	2449	66	0	492	1892	0		
lignment Profile 1800m														— Quat	ternary	 Shallow implementation ~ 30 m below lakebed
1600m														- Wild	flysch asse suba	 Reduction of shaft
1400m														- Mola	asse	length and technical
1200m														- Shaf	t	installations
-B000m					F	F		0						- · Aligr	ment	Installations
2 300m E						9	H									One very deep shaft F
600m \ B		C		E	1						-	V.	_	4		(DE or collimation)
400m							·	• • • • • • • • •								(RF of collimation),
200m											1		1		-	alternatives being
Dm Okm	10km	2	0km	30km	40km Distance a	ilong ring clock	60km kwise from CERN (km)	km		70km	9	Okm	90kn	n		studied, e.g. inclined

Geology Intersected by Tunnel Geology Intersected by Section

J. Osborne & C. Cook

on

- ed
- F access

Hadron collider parameters

Parameter	FCC-hh		SPPC	LHC	HL LHC
collision energy cms [TeV]	100		71.2	14	
dipole field [T]		16	20	8	.3
# IP	2 main & 2		2	2 main & 2	
bunch intensity [10 ¹¹]	1	1 (0.2)	2	1.1	2.2
bunch spacing [ns]	25	25 (5)	25	25	25
luminosity/lp [10 ³⁴ cm ⁻² s ⁻¹]	5	25	12	1	5
events/bx	170	850 (170)	400	27	135
stored energy/beam [GJ]	8.4		6.6	0.36	0.7
synchr. rad. [W/m/apert.]		30	58	0.2	0.35

FCC-hh tunnel

Basic layout following LHC concept

- 6 m inner tunnel diameter
- Main space allocation:
 - 1200 mm cryo distribution line (QRL)
 - 1480 mm installed cryomagnet
 - 1600 cryomagnet magnet transport
 - >700 mm free passage.

HE-LHC Integration

working hypothesis for HE LHC design: no major CE modifications on tunnel and caverns

- similar geometry and layout as LHC machine and experiments
- * maximum magnet cryostat external diameter compatible with LHC tunnel \sim 1200 mm
- lassical cryostat design gives \sim 1500 mm diameter!

strategy: develop optimized 16 T magnet, compatible with both HE LHC and FCC-hh requirements:

- allow stray-field and/or cryostat as return-yoke
- optimization of inter-beam distance (compact)
- ightarrow smaller diameter also relevant for FCC-hh cost

LHC tunnel diameter 3.8 m

• FHC baseline is 16T Nb₃Sn technology for ~100 TeV c.m. in ~100 km

Develop Nb₃Sn-based 16 T dipole technology (at 4.2 K?),

- conductor developments
- short models with sufficient aperture (40 50 mm) and
- accelerator features (margin, field quality, protect-ability, cycled operation).

Goal: 16T short dipole models by 2018/19 (America, Asia, Europe)

• In parallel HTS development targeting 20 T (option and longer term)

Goal: Demonstrate HTS/LTS 20 T dipole technology:

- 5 T insert (EuCARD2), ~40 mm aperture and accelerator features
- Outsert of large aperture ~100 mm, (FRESCA2 or other)

16T magnet development timeline

ee he

A detector design?

For the Conceptual Design Report, we were asked to come up with a detector design which that could enable us to fully exploit the physics of 100 TeV pp collisions

The design that follows is rather conservative and is meant only to demonstrate that such a detector can be built.

Conceptual Design Report

1 – PHYSICS	2	3 – Hadron Collider Comprehensive						
	Hadron	Accelerator	Accelerator Injectors					
	Summary	Infrastructure	Operation Exp	periment eh				
	Δ	5 – Lepton Collide	er Comprehensive	2				
Physics opportunities	Lepton	Accelerator	Injectors	Technologies				
across all scenarios	Summary	Infrastructure	Operation	Experiment				
	6	7 – High Energy LHC Comprehensive						
	High Enerav	Accelerator	Injectors	Infrastructure				
	LHC Summary	Refs to FCC-hh, HL-LHC, LHeC						

- Required for end 2018, as input for European Strategy Update
- Common physics summary volume
- Three detailed volumes FCChh, FCCee, HE-LHC
- Three summary volumes FCChh, FCCee, HE-LHC

Physics constraints for detector

- Known Physics will be more boosted and more forward
- Heavy new physics will lead to higher P_T

Pseudorapidity of the most forward muon in $H\rightarrow ZZ^*\rightarrow 4mu$, at 13 TeV and 100 TeV

Pseudorapidity of the most forward VBF jet in VBF Higgs production, at 13 TeV and 100 TeV

A detector design?

- 6T, 12m bore solenoid, 10Tm dipoles, shielding coil
- → 65 GJ Stored Energy
- → 28m Diameter
- → >30m shaft
- → Multi Billion project

- 4T, 10m bore solenoid, 4T forward solenoids , no shielding coil
- → 14 GJ Stored Energy
- ightarrow Rotational symmetry for tracking !
- → 20m Diameter (≈ ATLAS)
- → 15m shaft
- $\rightarrow \approx 1$ Billion project

A reference detector design

- 4T 10m solenoid
- Forward solenoids
- Silicon tracker
- Barrel ECAL Lar
- Barrel HCAL Fe/Sci
- Endcap HCAL/ECAL LAr
- Forward HCAL/ECAL LAr

Future pp colliders Filip Moortgat

Comparison to ATLAS & CMS

Current detector baseline

Detector magnet system

Today's baseline:

4T/10m bore 20m long Main Solenoid 4T Side Solenoids – all unshielded 14 GJ stored energy, 30 kA and 2200 tons system weight

Alternative challenging design:

4T/4m Ultra-thin, high-strength Main Solenoid allowing positioning inside the e-calorimeter, 280 MPa conductor (side solenoids not shown) 0.9 GJ stored energy, elegant, 25 t only, but needs R&D!

- Detector performance evaluated in first simulation studies
 - fed back into parameterised physics smearing simulation
 - full simulation/reconstruction chain being developed

Magnet systems under consideration

Twin solenoid with dipoles (min. shaft diameter 27.5m)

Partially shielded solenoid with dipoles

Unshielded solenoid with dipoles (min. shaft diameter 16.3m, if rotated under ground)

Twin solenoid with balanced conical solenoid

Unshielded solenoid with balanced conical solenoid

Reference detector

- 4T 10m solenoid
- Forward solenoids
- Silicon tracker
- Barrel ECAL Lar
- -• Barrel HCAL Fe/Sci
- Endcap HCAL/ECAL LAr
- Forward HCAL/ECAL LAr

This is a reference detector that 'can do the job' and that is used to define the challenges. The question about the specific strategy for detectors at the two IPs is a different one.

Charged particle dose?

Neutron background?

Tracking

FCC-hh baseling tracking

Muon performance

- FCC Combined M.S. Limit
- FCC combined 25um Muon Position Resolution
- FCC combined 50um Muon Position Resolution
- FCC combined 100um Muon Position Resolution

Timing detector(s)?

- Compare FCC-hh scenario to HL-LHC conditions (PU~140), using e.g. CMS Ph2 upgrade layout

HL-LHC scenario @ PU=140 CMS Ph2 Upgr. tracker

FCC-hh scenario @ PU=1000 Tilted layout

Trigger/DAQ?

Example: ATLAS Phase2 calorimetry will be digitized at 40MHz and sent via optical fibers to L1 electronics outside the cavern at 25TByte/s to create the L1 Trigger.

Muon system will also be read out at 40MHz to produce a L1 Trigger.

Reading out the FCC detector calorimetry and muon system at 40MHz will result in 200-300 TByte/s, which seems feasible.

40MHz readout of the tracker would produce about 800TByte/s.

Question:

Can the L1 Calo+Muon Trigger have enough selectivity to allow readout of the tracker at a reasonable rate of e.g. 1MHz ?

Un-triggered readout of the detector at 40MHz would result in 1000-1500TByte/s over optical links to the underground service cavern and/or a HLT computing farm on the surface.

Benchmark: long-lived sleptons

arxiv:1606.00947

 $\tilde{\ell}_{\mathrm{R}}$ LLCP

Assume only DY production: $pp \to (\gamma, Z) \to \tilde{\ell}_{\mathrm{R}} \tilde{\ell}_{\mathrm{R}}^*$

Extra handle at 100 TeV: TeV muon energy loss

e.g. requiring E_{loss} < 30 GeV reduces muon background by 18% per muon

Relic neutralino parameter space for tan $\beta = 10$

Relic dark matter for all params decoupled except Higgs doublet vevs (μ ,tan β) and the bino and wino majorana masses (M₁,M₂)

- Wino or higgsino LSP leads meta-stable chargino
- c τ ~ 6 cm (wino), 7 mm (higgsino) \rightarrow directly detectable
 - chargino tracks disappear in the tracker.

Ryu Sawada

- ATLAS limit for wino (higgsino) LSP : 460 GeV (152 GeV)
- CMS limit : 715 GeV @ τ = 3 ns, ~ 310 GeV @ τ = 0.2 ns (wino LSP)
 CMS-PAS-EXO-16-044

Does FCC have a potential to definitively confirm/exclude that a thermally produced WIMP exists ?

- \cdot Require a high pT ISR jet and large $E_{T^{miss}}$
 - In ATLAS, jet pT>140, ETmiss > 140 GeV

Layout	Default (#1)	Alternative (#2)) Alternative (#3)		
		wino ($m_{\tilde{\chi}_1^{\pm}} = 3 \text{ Term}$	eV)		
Leading jet p_T threshold [TeV]	1	1	1		
E_T^{miss} threshold [TeV]	4	3	2		
Signal yield	28.5	86.5	287		
Background yield	1.9	7.2	42.6		
Significance	10.4	17.8	26.8		
	higgsino ($m_{\tilde{\chi}_1^{\pm}} = 1 \text{ TeV}$)				
Leading jet p_T threshold [TeV]	1	1	1		
E_T^{miss} threshold [TeV]	1	4	4		
Signal yield	2.7	6.6	19.0		
Background yield	673	1.8	1.6		
Significance	0.0	3.4	8.0		

- · Require "disappearing track"
 - Defined as having no associated hits after a layer
 - Required at least 4 or 5 hits in a track.
 - Only the central ($|\eta| < 1.9$ by default) to suppress BG.

3 detector layouts considered

Table 1.1: Signal acceptance for wino and higgsino with $|\eta| < 1$ and 4 or 5 layer hits. The acceptance at alternative layout (#3) is larger than others because the layer radius is closer to the beam pipe.

Layout	Default (#1)	Alternative (#2)	Alternative (#3)
		wino $(m_{\tilde{\chi}_1^{\pm}} = 3 \text{ Te})$	eV)
$N_{\text{layer}}^{\text{hit}} \ge 4$	2.5 %	2.5 %	4.4 %
$N_{\text{layer}}^{\text{hit}} \ge 5$	0.57 %	1.3 %	2.5 %
	h	niggsino ($m_{\tilde{\chi}_1^{\pm}} = 1$	TeV)
$N_{\text{layer}}^{\text{hit}} \ge 4$	0.0043 %	0.0043 %	0.016 %
$N_{ m layer}^{ m hit} \geq 5$	0.00022 %	0.0011 %	0.0043 %

- Physical background
 - Missing hits due to material interaction
 - Dominant source is $W{\rightarrow}\ell\,\nu\,,$ where ℓ

is an electron or a τ .

• E_T^{miss} from ν and an isolated electron or a pion from 1-prong τ decay.

Unphysical background

- Random combination of hits
- The rate depends on the detector layout, pileup etc.

Ryu Sawada

Results:

Figure 1.33: Expected discovery significance at 30 ab⁻¹ with requirements of good time-fit quality, 200 or 500 pileup collisions. The reduction rate by time information with 200 pileup collisions are assumed to be same for the one with 500 pileup collisions. The grey band shows the significance using the default layout (#1). The red band shows the significance using the alternative layout (#3). Results assuming the average $\mu = 200$ and 500 are shown. The band width corresponds to the difference of the two configurations of the soft QCD processes.

Ryu Sawada

CERN roadmap and FCC planning

Draft schedule

In Conclusion

- The HEP community in Europe is entering a phase of strategic discussions about the future
- A Conceptual Design Report (CDR) for FCC (ee, eh and hh) is being finalized. Also, a Yellow Report for HL/HE-LHC is in preparation.
- While some LLP benchmarks are being considered in these documents, I encourage the LLP community to focus some of their creative energy on these future pp colliders & detectors

Reading material

Physics at the FCC-hh

https://twiki.cern.ch/twiki/bin/view/LHCPhysics/FutureHadroncollider

Volume 1: SM processes (238 pages) arXiv:1607.01831
 Volume 2: Higgs and EW symmetry breaking studies (175 pages) arXiv:1606.09408
 Volume 3: beyond the Standard Model phenomena (189 pages) arXiv:1606.00947
 Volume 4: physics with heavy ions (56 pages) arXiv:1605.01389
 Volume 5: physics opportunities with the FCC-hh injectors (14 pages) <u>arXiv:1706.07667</u>

Now available as a CERN Yellow Report

https://e-publishing.cern.ch/index.php/CYRM/issue/view/35/showToc

Top quark production

PDF	σ(nb)	$\delta_{\text{scale}}(nb)$	(%)	$\delta_{PDF}(nb)$	(%)
CT14	34.692	$^{+1.000}_{-1.649}$	(+2.9%) (-4.7%)	$^{+0.660}_{-0.650}$	(+1.9%) (-1.9%)
NNPDF3.0	34.810	$^{+1.002}_{-1.653}$	(+2.9%) (-4.7%)	$^{+1.092}_{-1.311}$	(+3.1%) (-3.8%)
PDF4LHC15	34.733	$^{+1.001}_{-1.650}$	(+2.9%) (-4.7%)	± 0.590	$(\pm 1.7\%)$

$\sigma_{tot}(100 \text{ TeV}) \sim 35 \times \sigma_{tot}(14 \text{ TeV})$

- \Rightarrow about 10¹² top quarks produced in 20 ab⁻¹
 - rare and forbidden top decays
 - 10¹² fully inclusive W decays, triggerable by "the other W"
 - rare and forbidden W decays
 - 3 10¹¹ W→charm decays
 - 10¹¹ W→tau decays
 - 10¹² fully charge-tagged b hadrons

Higgs production rates

	N_{100}	N_{100}/N_8	N_{100}/N_{14}
$gg \to H$	16×10^9	4×10^4	110
VBF	$1.6 imes 10^9$	$5 imes 10^4$	120
WH	$3.2 imes 10^8$	$2 imes 10^4$	65
ZH	$2.2 imes 10^8$	$3 imes 10^4$	85
$t ar{t} H$	$7.6 imes 10^8$	$3 imes 10^5$	420

 $N_{100} = \sigma_{100 \text{ TeV}} \times 20 \text{ ab}^{-1}$

 $N_8 = \sigma_{8 \text{ TeV}} \times 20 \text{ fb}^{-1}$

 $N_{14} = \sigma_{14 \text{ TeV}} \times 3 \text{ ab}^{-1}$

H at large p_T

Lesson: Hierarchy of production channels changes at large p_T(H):

- σ(ttH) > σ(gg→H) above 800 GeV
- $\sigma(VBF) > \sigma(gg \rightarrow H)$ above 1800 GeV

Higgs couplings @ FCC

д нхү	ee [240+350 (4IP)]	pp [100 TeV] 30ab-1	ep [60GeV/50TeV], 1ab-1
ZZ	0.15%		
ww	0.19%	<mark>Apr</mark>	
bb	0.42%	stl	0.2%
сс	0.71%	der	1.8%
gg	0.80%	oun	
TT	0.54%	-	
μμ	6.2%	<1%	
ΥY	1.5%	<0.5%	
Ζγ		<1%	
tt	~13%	1%	
HH	~30%	3.5%	under study
uu,dd	H->ργ, under study		
SS	H->φγ, under study		
BRinv	< 0.45%	< 0.1%	
Γtot	1%		

detailed study, stat+syst

- rather detailed, stat only (understood/limited/negligible theory syst)
- parton level S and B (from ratios, negligibleTH syst, small exp syst)
- very preliminary estimates of exp/th syst (not stat-limited)

FCC-hh as a precision machine

One should not underestimate the value of FCC-hh standalone precise "ratios-of-BRs" measurements:

- independent of α_s , m_b, m_c, Γ_{inv} systematics
- sensitive to BSM effects that typically influence BRs in different ways. Eg

tree-level

 $BR(H \rightarrow \mu \mu)/BR(H \rightarrow ZZ^*)$ 2nd gen'n Yukawa gauge coupling

 $BR(H \rightarrow \gamma \gamma)/BR(H \rightarrow Z \gamma)$

different EW charges in the loops of the two procs

Higgs decays to BSM, affecting Γ_{tot} , would impact Γ_{inv} , (if weakly interacting), or BR_{YY} (if charged), or $\sigma(gg \rightarrow H)$ (if colored) \Rightarrow detectable from various production and/or decays ratios

The Higgs potential

After spontaneous symmetry breaking:

$$V(h) = \mu^2 \frac{h^2}{2} + \lambda \frac{h^4}{4}$$

The strength of the triple and quartic couplings is fully fixed by the potential shape.

1) it is the last missing ingredient of the SM, like the Higgs boson was the last missing particle, we need to prove that things really behave like we expect;

Why is it relevant?

2) It has implications on the stability of the Vacuum;

3) It could make the Higgs boson a good inflation field

Di-higgs production at pp colliders

Higgs decay branching fraction

NNLO with full top mass *NLO $m_t \rightarrow \infty$

HH discovery channels at 100 TeV

H selfcoupling determination

Contino, Englert, Panico, Papaefstathiou, Ren, Selvaggi, Son, Spannowsky, Yao

- overall rescaling of background rate $\ n_B
ightarrow r_B imes n_B$

- uncertainty on signal rate $\Delta_S = \frac{\Delta \sigma(pp \to hh)}{\sigma(pp \to hh)}$

using "medium" calorimeter resolution

For $\Delta_S \gtrsim 2.5\%$ the precision on λ_3 is dominated by the theory error on the signal: $\Delta \lambda_3 \simeq 2\Delta_S$

$\Delta\lambda_3$	$\Delta_S = 0.00$	$\Delta_S = 0.01$	$\Delta_S = 0.015$	$\Delta_S = 0.02$	$\Delta_S = 0.025$
$r_B = 0.5$	2.7%	3.4%	4.1%	4.9%	5.8%
$r_B = 1.0$	3.4%	3.9%	4.6%	5.3%	6.1%
$r_B=1.5$	3.9%	4.4%	5.0%	5.7%	6.4%
$r_B = 2.0$	4.4%	4.8%	5.4%	6.0%	6.8%
$r_B = 3.0$	5.2%	5.6%	6.0%	6.6%	7.3%

Tab H-30

Results updated/confirmed with improved analysis by M.Selvaggi, <u>https://indico.cern.ch/event/613195/</u>

Invisible Higgs decays

Invisible Higgs decays

Constrain bg pt spectrum from $Z \rightarrow vv$ to the % level using NNLO QCD/EW* to relate to measured $Z \rightarrow ee, W$ and γ spectra

SM sensitivity with lab⁻¹, can reach few x 10⁻⁴ with 30ab⁻¹

SUSY reach

