Dark Sector Searches at MAMI/MESA

Search for Long Lived Particles at the LHC, 4th Workshop LHC LLP
Amsterdam, October 24, 2018
Achim Denig
Dark Sector Searches

keV MeV GeV TeV DM Mass

WIMPs

Achim Denig
Dark Sector Searches

Dark Photon - Messanger
New massive force carrier of extra $U(1)_d$ gauge group

- Could explain large number of astrophysical anomalies
 Arkani-Hamed et al. (2009)
 Andreas, Ringwald (2010);

- Could explain deviation of 3.7σ between $(g-2)_\mu$ SM prediction and direct $(g-2)_\mu$ measurement
 Pospelov(2008)
Model 1: $m_{\gamma'} \ll m_{DM}$

Dark Photon decaying into SM particles – coupling ϵ

Holdom [1986]
Dark Photon

Model 1: \(m_{\gamma'} \ll m_{\text{DM}} \)

Dark Photon decaying into SM particles – coupling \(\epsilon \)

Model 2: \(m_{\gamma'} > 2m_{\text{DM}} \)

Dark Photon decaying into Dark Matter
→ invisible decay experiments
→ LDM detection

Holdom [1986]
Dark Photon Searches at MAMI / MESA
(Model 1)

Light Dark Matter Search at MESA
(Model 2)
Dark Photon Status in 2010

Year 2010

Coupling

allowed parameter range for $(g-2)_\mu$ explanation

Mass

10^{-3}

$(g-2) \pm 2\sigma$
favored

$\sim\gamma$

μ^+

γ'

μ^+

$\sim\gamma$

$\sim\gamma$

 terra incognita

white region motivated by dark matter!
Searches using Fixed-Target Experiments

Bjorken, Essig, Schuster, Toro (2009)

Low-energy, high-intensity accelerators on the GeV scale are ideally suited for Dark Photon searches

Bump hunting!

1. High luminosity e- beam
2. Excellent mass resolution
3. Detection at small angles

→ MAMI / JLAB
→ Spectrometers
Mainz Microtron MAMI

Electron Accelerator for Fixed Target Experiments

$E = 0.185 - 1.6 \text{ GeV}$

$I_{\text{max}} \sim 100 \mu\text{A}$

Continuous Wave (CW)

- Emittance 25 nm rad
- Resolution $\sigma_E < 0.100 \text{ MeV}$
- Polarization 85%
- Reliability: 7000 hours / year
A1 High Resolution Spectrometers

Spectrometer A:
- $\alpha > 20^\circ$
- $p < 735 \text{ MeV}_c$
- $\Delta \Omega = 28 \text{ msr}$
- $\Delta p/p = 20\%$

Spectrometer B:
- $\alpha > 8^\circ$
- $p < 870 \text{ MeV}_c$
- $\Delta \Omega = 5.6 \text{ msr}$
- $\Delta p/p = 15\%$

MAMI Beam:< 1.6 GeV

high momentum resolution $\sim 10^{-4}$
Results from A1

Merkel et al. [A1]
PRL ’11
PRL ‘14

- E_{beam} 180 - 855 MeV
- 100 μA beam current
- Stack of Ta targets
- 22 kinematic settings
- O(1 month) of beam time
Results from A1

Merkel et al. [A1]
PRL '11
PRL '14

- E_{beam} 180 - 855 MeV
- 100 µA beam current
- Stack of Ta targets
- 22 kinematic settings
- O(1 month) of beam time

→ at time of publication most stringent limit ruling out major part of the parameter range motivated by $(g-2)_\mu$

Achim Denig
Situation as of today

Year 2017

\[\gamma_{m^2} - 2 \times 10^{-1} \]

\[\varepsilon_{(g-2)} \]

KLOE 2013

KLOE 2015

KLOE 2016

KLOE 2014

WASA

HADES

PHENIX

A1

APEX

BESIII

BABAR 2009

BABAR 2014

E774

E141

NA48/2

Merkel et al. [A1]

PRL '11

PRL '14

\((g-2)^e \)

\((g-2) \) favored

\(\sigma_2 \pm \mu_1 \) (g-2) favored

E141

BABAR 2014

BABAR 2009

\[m_{\gamma^*} \text{ [GeV/c}^2\text{]} \]

10^-4

10^-3

10^-2

10^-1

1
Mainz Microtron MAMI

Electron Accelerator for Fixed Target Experiments

E = 0.185 - 1.6 GeV

I_max ~ 100 µA

Continous Wave (CW)
Mainz Microtron MAMI

Electron Accelerator for Fixed Target Experiments
\(E = 0.185 - 1.6 \ \text{GeV} \)
\(I_{\text{max}} \sim 100 \ \mu\text{A} \)
Continuous Wave (CW)

MESA
Mainz Energy-Recovering Superconducting Accelerator

Status of the MESA Project
Mainz Energy-Recovering Superconducting Accelerator

Recirculating ERL Mode

\[E_{\text{max}} = 155 \text{ MeV} \]

\[I_{\text{max}} > 1 \text{ mA} \]

Beam Polarization

ERL-Mode Internal Target

MAGIX Experiment
Operation of a high-intensity (polarized) ERL beam in conjunction with light internal target
→ a novel technique in nuclear and particle physics
→ precise measurement of low momenta tracks at competitive luminosities
The MAGIX Spectrometers

High resolution spectrometers MAGIX:

- double arm, compact design
- momentum resolution: $\Delta p/p < 10^{-4}$
- acceptance: ±50 msr
- GEM- or TPC-based focal plane detectors

- Gas Jet or polarized T-shaped target for polarized target measurements

GEM technology for focal plane
Latest design: GEM-TPC
Dark Sector Searches at MAGIX

Features:

- Xe gas target
- Luminosity 10^{35} cm$^{-2}$s$^{-1}$
- 6 month of data taking

Achim Denig
Dark Photon Searches at MAMI /MESA
(Model 1)

Light Dark Matter Search at MESA
(Model 2)
Beam Dump Experiment (BDX) @ MESA

Electron Scattering (MESA) on Beam Dump → Collimated pair of Dark Matter particles!

10,000 hours data taking @ 150 µA → $>10^{22}$ electrons on target (EOT)
Beam Dump Experiment (BDX) @ MESA

Electron Scattering (MESA) on Beam Dump → Collimated pair of Dark Matter particles!

- Extracted Beam
 P2 Experiment

- Extracted beam
 BDX Experiment

10,000 hours data taking @ 150 μA → $>10^{22}$ electrons on target (EOT)
Beam Dump Experiment (BDX) @ MESA

Electron Scattering (MESA) on Beam Dump → Collimated pair of Dark Matter particles!

10,000 hours data taking @ 150 μA → $>10^{22}$ electrons on target (EOT)
Electron Scattering (MESA) on Beam Dump
→ Collimated pair of Dark Matter particles!
Simulation BDX @ MESA

- Full GEANT4 simulation (P2 target, beam dump, BDX detector volume, walls etc.)
- Addition of 2.5 mm W plate before beam dump to increase (dark) photon rate?
- No neutrino background due to low beam energy, reduced neutron background

![Copper, Water, Aluminum diagram]

\[E_{\text{beam}} = 140 \text{ MeV} \]
\[\chi \text{ elastic scattering kinematics} \]

assume 14 MeV detector cut off as experimentally verified
Detector Concept for BDX @ MESA

Ideal Requirements:
1. Large Surface (Acceptance)
2. Large thickness (Int. Prob.)
3. High density (Int. Prob.)
4. Reliability (long running time)
5. Background rejection
 - Cosmics
 - Natural Backgrounds
 - Beam Backgrounds (Neutrons)
Detector Concept for BDX @ MESA

Ideal Requirements:
1. Large Surface (Acceptance)
2. Large thickness (Int. Prob.)
3. High density (Int. Prob.)
4. Reliability (long running time)
5. Background rejection
 - Cosmics
 - Natural Backgrounds
 - Beam Backgrounds (Neutrons)

Baseline Concept
Inorganic crystal calorimeter (high density)
 - Cherenkov (fast, no neutrons)
 - Scintillator (higher light yield)
Test Beam BDX @ MESA

Adjustable table

Fiber Detector (trigger)

14 MeV

MAMI beam

Measurements:
Light Yield
Position dependence
PMT voltage scan

Crystal investigated
SF5 (Pb-Glass, Schott AG)
SF6 (Pb-Glass, Schott AG)
SF57HTultra (Pb-Glass, Schott AG)
BGO (from L3-LEP)
PbF$_2$ (from A4/MAMI)

< p.e. > = 12.9
FWHM = 6.9

Counts

PbF$_2$
Sensitivity BDX @ MESA
Dark Sector Searches at MAMI / MESA

- GeV scale Dark Photon searches motivated by
 - Astrophysical anomalies
 - $(g-2)_\mu$

- Low-energy electron fixed-target accelerators ideally suited for Dark Photon searches

- Results from A1/MAMI and from JLAB

- New MESA accelerator < 155 MeV up to 1 mA beam current becoming operational in 2023
 - MESA allows to cover low-mass region for Dark Photon

- Competitive Beam Dump Experiment (BDX) at MESA
Dark Sector Searches at MAMI / MESA

- GeV scale Dark Photon searches motivated by
 - Astrophysical anomalies
 - $\mu (g-2)$

- Low-energy electron fixed-target accelerators ideally suited for Dark Photon searches

- Results from A1/MAMI and from JLAB

- New MESA accelerator up to 1 mA beam current becoming operational in 2023

- MESA allows to cover low-mass region for Dark Photon searches

- Competitive Beam Dump Experiment (BDX) at MESA

New Collaborators welcome