Stable Sexaquark as Dark Matter

Glennys R. Farrar
New York University

Stable Sexaquark and other uds Dark Matter

How could we have missed a stable particle made of quarks?

[Hints from Astrophysics]
[Primordial Nucleosynthesis]
Dark-Matter to Ordinary-Matter ratio
[Detecting S dark matter]
Discovering a stable sexaquark in the lab
Unique among multi-quark states:

Fermi statistics is compatible with a \textit{totally symmetric} spatial wave function AND

antisymmetric (singlet) in:
- color
- flavor
- spin

totally symmetric in space

(Most-Attractive Channel)3:

6-quark, \(Q=0, B=2 \)
- \textit{Spin-0, scalar}
- \textit{Flavor singlet}
- \(m_S < 2 \text{ GeV} \)

Same quark content as H-dibaryon* (Jaffe 1977), but different physics: \textbf{not a loosely bound di-\(\Lambda \)!}

*mass ~ 2150 MeV in bag model — decays in \(10^{-10} \) s
Why consider $m_S \sim 2 m_p$?

$(2 m_p = 1.876 \text{ GeV})$

- Light quarks almost massless, i.e. relativistic
 - $m_{u,d} \approx 0, m_s = 91 \text{ MeV}$
- S has same QNs as ground state glueball
 - why not $m_S \approx m_{\text{glueball}} + 180 \text{ MeV} = (1.5-1.7) + 0.18 \text{ GeV} \approx 2 m_p$
- $3 \times \text{di-quark mass} = 1.2 - 2 \text{ GeV}$

- $m_S < 2 (m_p + m_e): S$ is absolutely stable
- $m_S > 2 (m_p - 8 \text{ MeV}): \text{nuclei are stable}$

- triple-singlet (color,flavor,spin): MAC, lattice, almost all models $\Rightarrow m_S < 2 \Lambda$
- extensive experimental searches exclude weak-lifetime & $m > 2 \text{ GeV}$

\Rightarrow bound state exists and mass $< 2 \text{ GeV}$ (τ > τ_{Univ} or stable)
Stable Sexaquark Hypothesis

Stable Sexaquark Hypothesis

https://en.wikipedia.org/wiki/Numeral_prefix

|----|------------|----|-----------|-----------|---------|---------------------------------------|---------|-------|

Crucial fact:

S does not couple to pions => much smaller than usual hadrons => hard to produce with hadrons

6-quark, Q=0, B=2

Spin-0, scalar

Flavor singlet

m ~ 1.7-2 GeV

* Sometimes Greek hexa- is used in Latin compounds, such as hexadecimal, due to taboo avoidance with the English word sex.

G. R. Farrar, LHC-LLP, Oct. 24, 2018
Stable S?

- $\tau > \tau_{\text{Univ}}$
 - $M_S < 2m_p + 2m_e = 1877.6 \text{ MeV} \Rightarrow$ absolutely stable
 - $M_S > 2m_p + 2\text{BE} = 1860 \text{ MeV} \Rightarrow$ nuclei absolutely stable
 - higher and lower mass may also work $\Gamma \sim G_F^4 \times (\text{wave function overlap})^2$

- Lattice predicts binding (Beane+13)
 - $(m_q = 850 \text{ MeV} \text{ so not realistic})$
 - 80 MeV binding

- Experiments exclude decaying S
 \[\Rightarrow \text{ it must be STABLE ! } \quad ;-) \]
Conditions on QCD Dark Matter

✓ $\tau_{DM} > \tau_{Univ}$, cold, neutral
✓ primordial nucleosynthesis
✓ Particle must not be already excluded
 – accelerator searches
 – exotic isotopes
 – DM searches
 – indirect impacts (heating planets, helioseismology,…)
 – stability of nuclei
 – equation of state of neutron stars (and their stability)
✓ Correct relic density (for natural DM mass & size)
S has not been discovered at accelerators because it is elusive

- Many negative searches, but all are inapplicable. They either:
 - looked for H-dibaryon through decays (but S is stable)
 - restricted to mass > 2 GeV (but m_S < 2 GeV)
 - required ΛΛ fusion in hypernuclei (but SΛΛ overlap is small)

- S is similar to (the much more copious) neutron

- Wavefunction overlap with baryons is very small. Extremely rare fluctuation required for S ⇔ ΛΛ; S ⇔ NN is GF^4 smaller & GIM suppressed=>
 - g_{eff,SBB} ≈ 10^{-6} (r_S / 0.2)^10
 - nuclei can be stable (τ > 10^{29} yr) even for m_S > 2 m_p
 - hard to produce in fixed target experiments

*apart from BaBar

G. R. Farrar, LHC-LLP, Oct. 24, 2018
Parenthesis:
Relic Abundance of *uds* Dark Matter

Stat Mech + quark masses, $T_{QCD} \approx 150$ MeV $\Rightarrow \Omega_{SDM}/\Omega_b = 4.5 \pm 1$

CORRECT udsDM RELIC DENSITY! $\Omega_{DM}/\Omega_b = 5.3 \pm 0.1$

After hadronization: S excess is out-of-equilibrium abundance preserved if S’s don’t disintegrate, e.g., via $K^+ S \rightarrow \Sigma + \Lambda$

requires $g_{eff,SBB} < 2 \times 10^{-6}$

With $r_S \approx 0.2$ fm, $g_{eff,SBB}$ effective coupling is $\approx 10^{-6} (r_S/0.2)^{10} \Rightarrow S$ DOES NOT BREAKUP

Dibaryons cannot be the dark matter

Edward W. Kolb and Michael S. Turner
Kavli Institute for Cosmological Physics and the Enrico Fermi Institute,
The University of Chicago, 5640 S. Ellis Ave, Chicago, IL 60637
(Accepted: September 18, 2018)
Experimental searches so far

Looking for Jaffe’s H-dibaryon (same QN but assumed to be unstable and r~1 fm)

- Require $M > 2$ GeV:
 - Gufstafson+ FNAL1976: Beam-dump + tof Limit on production of neutral stable strongly interacting particle with mass > 2 GeV
 - Carroll+ BNL 1978: No narrow missing mass peak above 2 GeV in $\text{pp} \to \text{K K X}$

- Require H-dibaryon decay:
 - Badier+ NA3 1986
 - Bernstein+ FNAL 1988: Limit on production of neutral with $10^{-8} < \tau < 2 \times 10^{-6}$ s
 - Belz+ BNL 1996: $\text{H} \to \Lambda n$ or Σn [c.f., issue raised by L. Littenberg]
 - Kim+ Belle 2013: no narrow resonance in $\Upsilon \to \Lambda p K$

- Limits from production in doubly-strange hypernuclei:
 - Ahn+ BNL 2001
 - Takahashi+ KEK 2001

G. R. Farrar, LHC-LLP, Oct. 24, 2018
Experimental Searches

- **Require M > 2 GeV:**
 - Gufstafson+ FNAL 1976: Beam-dump + tof Limit on production of neutral stable strongly interacting particle with mass > 2 GeV.
 - Carroll+ BNL 1978: No narrow missing mass peak above 2 GeV in pp -> K K X

- **Require H-dibaryon decay:**
 - Badier+ NA3 1986
 - Bernstein+ FNAL 1988: Limit on production of neutral with \(10^{-8} < \tau < 2 \times 10^{-6}\) s
 - Belz+ BNL 1996: \(H -> \Lambda + \Sigma^0\) [c.f., issue raised by L. Littenberg]
 - Kim+ Belle 2013: No narrow resonance in \(\Xi^0 -> \Lambda + K^+\)

- **Limits from production in doubly-strange hypernuclei:**
 - Ahn+ BNL 2001
 - Takashashi+ KEK 2001

Search for the Weak Decay of an H Dibaryon

- Brookhaven National Laboratory, Upton, New York 11973

- We have searched for a neutral H dibaryon decaying via \(H \rightarrow \Lambda + H\) and \(H \rightarrow \Sigma^0\). Our search yielded two candidate events from which we set a limit on the H production cross section. Normalizing to the inclusive A production cross section, we find at a mass of \(2.5 \text{ GeV}/c^2\), \(\sigma_{H \rightarrow \Lambda + H} \times \sigma_{H \rightarrow \Sigma^0} < 2 \times 10^{-6}\) at 90 C.L.

Production of \(\Xi^0\) Hypernuclei

- Brookhaven National Laboratory, Upton, New York 11973

- We have investigated the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 GeV. Using the PHENIX detector, we have measured the production of \(\Xi^0\) hypernuclei in \(p+p\) collisions at 200 Gev.
Sexaquark Discovery Strategy

- Apparent lack of B and S conservation:
 - missing $B = \pm 2$ + missing $S = \mp 2$
 - inclusive: maximizes event rate, hermetic detector; ID!

- Reconstruct missing mass, e.g.:
 - $\gamma \rightarrow \Lambda \Lambda \bar{S}$ (+ pions) \[M_{S^2} = (p_\gamma - p_{\Lambda 1} - p_{\Lambda 2} - \Sigma p_{\pi})^2 \]
 - exclusive: big penalty in statistics, but gain from mass peak

- LHC: \[\bar{S} + N \rightarrow \bar{\Lambda} K^+ \cdots \quad M_{S^2} = (p_{\bar{\Lambda}} + p_K - p_N)^2 \]
 - compromise: potentially a sweet spot (tbd)

- Snolab nuclei: \[p_n \rightarrow S e^+ \nu \quad G_F^4, \quad \tau > 10^{+29} \text{ yr} \quad (m_S < \sim 1875 \text{ MeV}) \]
\[\Upsilon \rightarrow \Lambda \Lambda \bar{S} \text{ & } \bar{\Lambda} \bar{\Lambda} \bar{S} \]

\[(+ \text{ pions}) \]

- \(\Upsilon \) is localized source of ggg
 \(\Rightarrow \) production of \(S \) is (relatively) enhanced

- Many \(\times 10^8 \) events collected (CLEO, BaBar, Belle)
 - detectors pretty hermetic, have good mass resolution, \(\mathcal{O}(10 \text{ MeV}) \)
 - \(\Lambda \) decays quickly to \(p \pi^- \) so easy to ID. \(c\tau = 8 \text{ cm} \)

- Can MEASURE \(m_S \) via missing mass in exclusive events
- Very clean
 - Main bkg is \(K_S K_S K_L K_L \) (+ pions)
 - \(K_S \)'s mis-ID'd as \(\Lambda \)'s and \(K_L \)'s escaping before decay: negligible for Belle
 - rare and can model accurately
 - \(K_S K_S K_L K_L \) (+ pions) is measurable, from \(K^+ K^+ K^- K^- \) (+ pions)

 - “Conspiracy” of missed particles producing \(\Delta B = \pm 2, \Delta S = \mp 2 \) very hard

Background does not have narrow peak in missing mass!

G. R. Farrar, LHC-LLP, Oct. 24, 2018
BaBar: exclusive $\text{BF} \left[\Upsilon(2S,3S) \rightarrow \Lambda \Lambda \bar{S} + \bar{\Lambda} \bar{\Lambda} S \right] < 1.4 \times 10^{-7}$
- 2 x 10^8 events; main backgrounds $\Upsilon(2S,3S) \rightarrow \Lambda \Lambda \bar{\Lambda} \bar{\Lambda} + X$ & noise in E-cal

Predicted inclusive $\text{BF} \left[\Upsilon(3S) \rightarrow (\bar{S} \text{ or } S + X) \right] \sim 2.7 \times 10^{-7}$ (GRF arXiv:1708.08951)
- SU(18) (color-flavor-spin) singlet: 5.4×10^{-4}; α_s^3; $(1/2)^5$

Exclusive Penalty:
- start with biggest exclusive 3-body channel: $\text{BF} \left[\Upsilon(2S,3S) \rightarrow \phi K K \right] = 2 \times 10^{-6}$
- penalty of S+\bar{S} relative to ϕ: 6×10^{-5}

Predict Exclusive $\text{BF} \left[\Upsilon(3S) \rightarrow \Lambda \Lambda \bar{S} + \bar{\Lambda} \bar{\Lambda} S \right] \sim 10^{-11}$
BaBar exclusive limit is a factor 10^4 from being constraining — need inclusive or semi-inclusive

- **BaBar:** *exclusive* BF\[\Upsilon(2S,3S) \rightarrow \Lambda \Lambda \bar{S} + \bar{\Lambda} \bar{\Lambda} S \] < 1.4×10^{-7}
 - 2 x 10^8 events; main backgrounds \(\Upsilon(2S,3S) \rightarrow \Lambda \Lambda \bar{\Lambda} \bar{\Lambda} + X \) & noise in E-cal

- **Predicted inclusive BF** [\(\Upsilon(ggg) \rightarrow (\bar{S} \text{ or } S + X) \)] \(\sim 2.7 \times 10^{-7} \) (GRF arXiv:1708.08951)
 - SU(18) (color-flavor-spin) singlet: 5.4×10^{-4} \(; \alpha_s^3; (1/2)^5\)

Exclusive Penalty:
- start with biggest exclusive 3-body channel: BF\[\Upsilon(2S,3S) \rightarrow \phi \ K K \] = 2×10^{-6}
- penalty of S+\(\bar{S} \) relative to \(\phi \) : 6×10^{-5}

- **Predict Exclusive BF** [\(\Upsilon(ggg) \rightarrow \Lambda \Lambda \bar{S} + \bar{\Lambda} \bar{\Lambda} S \)] \(\sim 10^{-11} \)
LHC I.

- Low production rate \((uuddss \text{ in small vol}; \text{SU}(18) \text{ singlet})\)
- Statistical examination of correlation \(\Delta B = \pm 2, \Delta S = \mp 2\)
- **Distinctive needle in a haystack** \((\sim 10^{11} \text{ recorded events})\)

- 2nd exponential in scattering-length distribution of n-like interactions, due to S
LHC II.

- Low production rate \((uuddss \text{ in small vol} \Rightarrow)\)
 - \(g_{\text{eff, SBB}} \approx 10^{-6} (r_S / 0.2)^{10}\)
 - \(\sim 100\) particles in central tracker/event \(\times N_{11} 10^{11}\)
 - \(\sim 10\) events (worst case, hopefully, since overlap may be enhanced at larger momentum)

- Statistical examination of correlation \(\Delta B = \pm 2, \Delta S = \mp 2\) ???

- Heavy ion collisions produce more particles — feasible to reconstruct ???

- **Find a distinctive needle in a haystack** (~\(10^{11}\) recorded events)?
 - ★ \(\bar{\Sigma}\) annihilation in tracker, tag by \(\bar{\Lambda} K^+\) pointing to tracker or \(\Xi^{+,0} \rightarrow \bar{\Lambda} \pi^{+,0}, \bar{\Lambda} \rightarrow \bar{p} \pi^+\)

Rate estimate: (GRF arXiv:1708.08951)

\(\bar{\Sigma}\) Production:

- 30 charged particles with pseudo-rapidity |\(\eta| < 2.4\); \(N\) events = \(N_{11} 10^{11}\)
- \(f_{-4}^{\text{prod}} 10^{-4}\) is the \(\bar{\Sigma}\) production rate relative to all charged particles
- \(\Rightarrow N_{\bar{\Sigma}} \approx 3 f_{-4} N_{11} 10^8\)

\(\bar{\Sigma}\) Annihilation:

\[
\sigma_{SN} \equiv f_{-6}^{\text{annih}} 10^{-6} \sigma_{NN}
\]

- 2nd exponential in scattering-length distribution of n-like interactions, due to S

\[N_{\Xi, \bar{\Lambda}} = f_{-4}^{\text{prod}} f_{-6}^{\text{annih}} f_{\Xi, \bar{\Lambda}} N_{11} 10^{5}\]

May be optimistic, depending on \(g_{\text{eff, SBB}}\) for LHC.
LHC III.

- LHCb
- ALICE
- ...

Please contact me if interested…
Key points to take home

• **There may a tightly bound 6-quark state** $S=\text{uuddss}$
 - Unique, symmetric structure \Rightarrow other hadrons don’t provide guidance
 - mass is not driven by chiral symmetry breaking (unlike baryons)
 - constituent quark model probably completely misleading
 - If $M_S < 2m_p + 2m_e$, S is absolutely stable

• **If S is stable, its an excellent Dark Matter candidate**
 - Relic abundance is natural. EXPLAINS Dark Matter to baryon ratio; can explain 7Li Discrepancy in BBN
 - Usual WIMP detection strategy isn’t applicable.

• **S may be waiting to be discovered in existing γ-decays or LHC experiments…**
 mass can be accurately measured in γ-decay exclusive final states.

• **SDM will be challenging to detect, but not impossible.** Astrophysical and cosmological effects may allow it to be constrained, excluded or confirmed.
Backup Slides
Relic Abundance of \textit{uds} Dark Matter

Stat Mech + quark masses, $T_{QCD} \approx 150$ MeV $\Rightarrow \Omega_{SDM} / \Omega_b = 4.5 \pm 1$

\textbf{CORRECT udsDM RELIC DENSITY!} $\Omega_{DM} / \Omega_b = 5.3 \pm 0.1$

After hadronization: S excess is out-of-equilibrium abundance preserved if S’s don’t disintegrate, e.g., via $K^+ S \rightarrow \Sigma + \Lambda$

requires $g_{\text{effSBB}} < 2 \times 10^{-6}$

With $r_S \approx 0.2$ fm, g_{effSBB} effective coupling is $\approx 10^{-6} (r_S / 0.2)^{10}$
Quark-Gluon Plasma \Rightarrow Hadrons \approx 150 MeV

- **Lattice QCD: crossover transition 160-140 MeV**
 - $T > 160$ MeV: $u,\bar{u},d,\bar{d},s,\bar{s},$gluons; NO vacuum condensates
 - $T < 140$ MeV: pions, kaons, $p,\bar{p},...;$ $<q\bar{q}>$ & $<GG>$ condensates
 - Abundance relative to photons (for species in equilibrium):

- **Baryogenesis** \Rightarrow
\[
\eta_{\text{tot}} = \eta \left(1 + \frac{\Omega_{DM}}{y_b \Omega_b}\right) \approx 4.1 \times 10^{-9}
\]

- u,d,s ratio from q masses
 - $m_u = 2.118(38)$ MeV
 - $m_d = 4.690(54)$ MeV
 - $m_s = 92.52(69)$ MeV

G. R. Farrar, LHC-LLP, Oct. 24, 2018
• Hypothesis: DM has u,d,s in equal numbers
 - sexaquark DM, strange quark nuggets (Witten, 1984)

\[
\frac{\Omega_{DM}}{\Omega_b} = \frac{y_b \kappa_s 3 f_s}{1 - \kappa_s 3 f_s}
\]

- \(y_b = \text{DM mass/m}_p\) (mass per unit baryon number)
- \(f_s = \text{fraction of quarks that are s}\)
- \(3 f_s\) is number uds per unit baryon # — ranges from 0.964 to 0.948 as \(T\) decreases from 160 MeV to 140 MeV.
- \(\kappa_s\) is efficiency of uds \(\rightarrow\) DM (Boltzmann, from hyperon and S masses)

\[
\kappa_s(m_S, T) = \frac{1}{1 + (r_{\Lambda, \Lambda} + r_{\Lambda, \Sigma} + 2 r_{\Sigma, \Sigma} + 2 r_{N, \Xi})} \\
r_{1,2} \equiv \exp[-(m_1 + m_2 - m_S)/T]
\]
Ω_{DM} / Ω_b follows from statistical mechanics, quark masses, and temperature of QGP-hadronization transition.

$$\frac{\Omega_{DM}}{\Omega_b} = \frac{m_S/(2m_p)}{1 - \kappa_S 3f_S}$$

$$\kappa_S(m_S, T) = \frac{1}{1 + (r_{\Lambda, \Lambda} + r_{\Lambda, \Sigma} + 2r_{\Sigma, \Sigma} + 2r_{N, \Xi})}$$

$$r_{1,2} \equiv \exp[-(m_1 + m_2 - m_S)/T]$$

Prediction is both correct AND accurate to ~20% for entire range (uncertainties cancel)

$$\Omega_{DM} / \Omega_b = 5.3 \pm 0.1$$

Prediction also applies to strange quark nuggets.

G. R. Farrar, LHC-LLP, Oct. 24, 2018
Stable S as Dark Matter

Abstract. We improve limits on the spin-independent scattering cross section of Dark Matter on nucleons, for DM in the 300 MeV – 100 GeV mass range, based on the DAMIC and XQC experiments. Our results close the window which previously existed in this mass range, for a DM-nucleon cross section of order $\sim \mu b$, assuming the standard velocity distribution.

Shielded (e.g. underground) detectors are not sensitive (energy loss)

Closing the window on \simGeV Dark Matter with moderate ($\sim \mu b$) interaction with nucleons

M. Shafi Mahdawi and Glennys R. Farrar
Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, NY 10003, USA
E-mail: shafi.mahdawi@nyu.edu, gf25@nyu.edu
Dark Matter with Hadronic Interactions

(GRF + Xingchen Xu, to appear shortly)

\[V(r) = \frac{\alpha}{r} e^{-\frac{r}{m_\phi}} \]

\(m_\phi = 1 \text{ GeV} \) (flavor-singlet \(\omega-\varphi \) combo), sourced by \(p \) or \(A \)

- \(v/c \) (DM) \(\sim 10^{-3} \)
 - \(10^3 \text{ km/s} \) (galaxy clusters) down to 1 km/s (atm & \(z = 17 \))
 - must solve Schroedinger Eqn. \textbf{Born approximation generically fails badly}
 - cross section depends only on combos

\[a = \frac{v}{2\alpha} \text{ and } b = \frac{2\alpha \mu}{m_\phi} \]

\[\begin{array}{c}
\text{FIG. 1: } \sigma m_\phi^2 \text{ as a function of } a = \frac{v}{2\alpha} \text{ and } b = \frac{2\alpha \mu}{m_\phi} . \\
\text{FIG. 3: Ratio of Born Approximation and Schroedinger Equation} \\
\text{FIG. 2: 3D plot of } \sigma m_\phi^2 \text{ in the } a, b \text{ plane; } b \text{ increases to the left and } a \text{ decreases toward the back.} \\
\text{FIG. 4: } \sigma m_\phi^2 \text{ versus } v \text{ in km/s, for 5 values of } b = \frac{2\alpha \mu}{m_\phi} .
\end{array} \]
Plenty of Room for SDM, for now…

(GrF + Xingchen Xu, to appear shortly)

\[
\alpha = \frac{\sigma}{\sigma_\text{Born}}
\]

Allowed regions of coupling from XQC (best Direct Detection)

FIG. 7: Allowed regions (blue) in the coupling-DM mass plane α (vertical axis) and m_{DM} in GeV (horizontal axis) from XQC using...
BBN’s problem with primordial \(^7\text{Li}\)

- Big Bang Nucleosynthesis works brilliantly \textit{except} \(10\sigma\) problem
 - Predicted abundance of \(^7\text{Li} = (5.61 \pm 0.26) \times 10^{-10}\)
 - Observed abundance of \(^7\text{Li} = (1.58 \pm 0.31) \times 10^{-10}\)

- Discrepancy is now very serious:
 - Nuclear rates all well-measured
 - \(\eta = n_b/n_\gamma = (6.58 \pm 0.02) \times 10^{-10}\) from CMB
 - Astrophysics now secure (Spite plateau):
 - small scatter
 - \(^7\text{Li}\) constant over > 3 decades of low metallicity

- \textbf{S solves the puzzle} (GRF + Richard Galvez, in preparation)
 - No other (reasonable) solution known
S dark matter breaks up 7Li & 7Be if $\sigma(S^{-7}\text{Be})$ is on resonance

- σ($S^{-7}\text{Be}$) is on resonance
 - $E_{th} = \sigma$($S^{-7}\text{Be}$)
 - Seems to solve ^7Li puzzle
 - Doesn't affect He or d

KE threshold for breakup =
- $1.58, 2.46, 4.47, 5.75, 19.3 [2.2] \text{ MeV}$
- $^7\text{Be} \quad 7\text{Li} \quad ^3\text{He} \quad T \quad 4\text{He} \quad [d]$

The “action” is at T~100 keV so S only affects weakly bound nuclei

Evolution of abundances

Standard Be7 case is dashed line
Cosmology & structure formation

• DM-baryon interaction: momentum transfer => slight drag on DM during structure formation
 • Dvorkin, Blum, Kamionkowski (2014), Gluscevic+Boddy (2017), Xu+18
 • Ly-alpha forest: \(\sigma < \sim 10 \text{ mb if v-indept} \) — no problem for S
 • Buen-Abad, Marques-Tavares, Schmaltz (2015):
 • momentum transfer helps reconcile \(H_0 \) & \(\sigma_8 \)

• Boring or an opportunity? To be determined…

• S-S self interactions + S-baryon interactions:
 • could have similar benefits as Self Interacting DM
 • core-cusp, “too-big-to-fail” & missing sub-halos problems.