

Bundesministerium für Bildung und Forschung

Overview

- Jet Images & Convolutional Networks
- Autoencoders
- Adversarial Training
- Dark Showers

Jet Images & Convolutional Networks

- Reconstruct energy with calorimeter (improve resolution using tracker)
- Cluster energy deposits into jet
- Preprocess:
 - center \rightarrow rotate \rightarrow flip (twice) \rightarrow pixelate \rightarrow crop \rightarrow normalise
 - center: centroid is at (0/0)
 - rotate: principal axis is vertical
 - flip: in (x<0, y>0)-plane maximum intensity
 - crop: to nxn images
 - normalise: intensity of each pixel divided by total intensity

(Overlay of 100k images)

(jet images by Michel Luchmann)

Supervised Classification

Convolutional Layer

That's the weights we want to train

Convolutional Network

How to build a convolutional network

- Chain multiple conv layers
- Use multiple masks per layer
- Pooling
 - Max Pooling
 - Average Pooling
- Add a fully connected network in the end

Performance

 Train a BDT on a set of standard tagging variables

SoftDrop + n-subjettiness:
$$\{\ m_{\rm sd}, m_{\rm fat}, \tau_2, \tau_3, \tau_2^{\rm sd}, \tau_3^{\rm sd}\ \}$$
 MotherOfTaggers:
$$\{\ m_{\rm sd}, m_{\rm fat}, m_{\rm rec}, f_{\rm rec}, \Delta R_{\rm opt}, \tau_2, \tau_3, \tau_2^{\rm sd}, \tau_3^{\rm sd}\ \}$$

- Advantages:
 - Symmetry / structure
 - Straightforward
- Potential Problems
 - Resolution
 - Sparsity
 - How to encode complex information

Performance Overview

Approach	AUC	Acc.	1/eB (@ eS=0.3)	Contact	Comments
LoLa	0.979	0.928		GK / Slmon Leiss	Preliminary number, based on LoLa
LBN	0.981	0.931	863	Marcel Rieger	Preliminary number
CNN	0.981	0.93	780	David Shih	Model from Pulling Out All the Tops with Computer Vision and Deep Learning (1803.00107)
P-CNN (1D CNN)	0.980	0.930	782	Huilin Qu, Loukas Gouskos	Preliminary, use kinematic info only (https://indico.physics.lbl.gov/i ndico/event/546/contributions/1 270/)
6-body N-subjettiness (+mass and pT) NN	0.979	0.922	856	Karl Nordstrom	Based on 1807.04769 (Reports of My Demise Are Greatly Exaggerated: N-subjettiness Taggers Take On Jet Images)
8-body N-subjettiness (+mass and pT) NN	0.980	0.928	795	Karl Nordstrom	Based on 1807.04769 (Reports of My Demise Are Greatly Exaggerated: N-subjettiness Taggers Take On Jet Images)

MotherOfTaggers

DeepTop: Image

DeepTop: LoLa

Autoencoders

Autoencoder

- Self-supervised learning
- Bottleneck with compressed representation
- Dimension reduction
- Denoising
- Regularizers

Autoencoder for Physics

- Can we find new physics without knowing what to look for?
- Train on **pure** QCD light quark/gluon jets and apply to top tagging
- Top quarks identified as anomaly

QCD or What? T Heimel, GK, T Plehn, JM Thompson, 1808.08979 Searching for New Physics with Deep Autoencoders M Farina, Y Nakai, D Shih, 1808.08992

Architecture

Convolutional network

Autoencoder will also work with other network architectures. Tested physics inspired, constituent based LoLa* architecture.

* from: Deep-learning Top Taggers & No End to QCD A Butter, GK, T Plehn, M Russell 1707.08966

What about mass?

- Without additional constraints the autoencoder also learns the kinematics of the training sample
- How to avoid?

Adversarial Training

Combined Setup

Mass Sculpting

Counteract with adversary:

$$L = L_{\rm Auto} - \lambda L_{\rm Adv}$$

Tune mass dependency with Lagrange multiplier

Signal contamination

- Procedure works also when signal is present in training data
- This means a search for exotic new physics with unknown shower patterns (dark showers) could be done using data-only training

Dark Showers

Recap

- We now have a tool that can identify anomalous jets..
 - ..purely trained on data in an unsupervised way
 - ..decorrelated from arbitrary variables (like mass)
- Potential usecase:
 - Dark shower jets

Dark multi-jet shower

Model

$$pp \to q_v \bar{q}_v \to q\bar{q} + E_T$$

- Heavy quark q_{v} pair-produced
- Decay to SM partner + dark boson b
- Hadronise into dark mesons π (stable or not)
- Assume:
 - Dark SU(3)c, α =0.1
 - $m_{\pi} = 2m_b$
 - ullet m_q = 200 GeV

Visible Effects of Invisible Hidden Valley Radiation L Carloni, T Sjostrand, JHEP 1009 (2010) Discerning Secluded Sector gauge structures L Carloni, J Rathsman, T Sjostrand, JHEP 1104 (2011)

Results

- Identify dark showers vs QCD
- Sensitivity will depend on model parameters

Conclusions

- Propose a new method based on unsupervised deep networks find non-SM physics as anomaly
- Can be trained from data and made independent of mass
- Explained for images, but can work with any neural network architecture
- Anti-QCD tagger: Orthogonal approach to dedicated searches

Thank you!

Backup

A Very Simple Network

$$y = f(f(x_1)w_1 + f(x_2)w_2)$$
$$f(x) = \Theta(x) \cdot x$$

Activation Functions

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

Leaky ReLU

 $\max(0.1x, x)$

tanh

tanh(x)

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ReLU

 $\max(0,x)$

 $\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$

Softmax $\sigma: \mathbb{R}^K \to (0,1)^K$ (for final classification layer) $\sigma(\mathbf{z})_j = \frac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$ for j = 1, ..., K.

$$\sigma: \mathbb{R}^K
ightarrow (0,1)^K$$

$$\sigma(\mathbf{z})_j = rac{e^{z_j}}{\sum_{k=1}^K e^{z_k}}$$

for
$$j = 1, ..., K$$
.

How do networks learn?

- Backpropagation + Gradient descent
- Pass input (x_1, x_2) to ANN
- Calculate output (\hat{y}) and difference to true value (y)This is the loss function L
- Find gradient of loss function with respect to weights
- Use gradient to find new weights

Regression Problem:

$$L(y, \hat{y}) = (y - \hat{y})^2$$

$$L(y, \hat{y}) = (y - \hat{y})^{2}$$

$$w_{t+1} = w_{t} - \eta \frac{\partial L}{\partial w_{t}} \equiv w_{t} - \eta \nabla L(w_{t})$$

Optimisers

$$w_{t+1} = w_t - \eta \nabla L(w_t)$$
 (stochastic/batched) gradient descent

$$w_{t+1} = w_t - \eta \nabla L(w_t) + \alpha \Delta w_t$$
+ momentum term

$$m_{t+1} = \beta_1 m_t + (1 - \beta_1) \nabla L$$

$$v_{t+1} = \beta_2 v_t + (1 - \beta_2) (\nabla L)^2$$

$$\hat{m}_{t+1} = \frac{m_{t+1}}{1 - \beta_1^t}$$

$$\hat{v}_{t+1} = \frac{v_{t+1}}{1 - \beta_2^t}$$

$$w_{t+1} = w_t - \eta \frac{\hat{m}_{t+1}}{\sqrt{\hat{m}_{t+1}} + \epsilon}$$

Adam

(a good starting point)

Classification

$$S = -\sum p_i \ln p_i$$

 Entropy: Optimal number of bits needed to encode when the probability distribution is known

$$S = -\sum p_i \ln \hat{p_i}$$

Cross Entropy: We do not know the true probability

$$L = \sum_{\text{Samples}} -y_s \ln \hat{y_s} - (1-y_s) \ln (1-\hat{y_s})$$
 True class image is cat: 0 DNN output between 0 and 1 image is dog: I

Minimize cross entropy: approximate true distribution