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• Jet Images & Convolutional Networks

• Autoencoders

• Adversarial Training

• Dark Showers
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Top

+

• Reconstruct energy with calorimeter  
(improve resolution using tracker)

• Cluster energy deposits into jet
• Preprocess: 

(Overlay of 100k images)

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)
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(jet images by Michel Luchmann)
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R=1.2

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)
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(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)
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=
Top Quark  
 Jet

QCD Jet

=

• Binary classification task
• Fully supervised learning 

(using simulation)
• 40x40 Pixels, ET

Deep-learning Top Taggers or The End of QCD?  
GK, Tilman Plehn, Michael Russell, Torben Schell
JHEP 05 (2017) 006
Pulling Out All the Tops with Computer Vision and Deep 
Learning, S Macaluso, D Shih, 
Origins:
Jet-Images: Computer Vision Inspired Techniques for Jet 
Tagging
J Cogan, M Kagan, E Strauss, A Schwartzman
arXiv:1407.5675
Jet-Images -- Deep Learning Edition
Ld Oliveira, M Kagan, L Mackey, B Nachman, A 
Schwartzman
JHEP 1607 069

Supervised Classification



Convolutional Layer
That’s the weights we want to train
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Convolutional Network
• How to build a convolutional network

• Chain multiple conv layers

• Use multiple masks per layer

• Pooling

• Max Pooling

• Average Pooling

• Add a fully connected network in the end

 8

9

Figure 4. Architecture [29] of our default networks for fully pre-processed images, defined in Tab. I.

classification is a parameter that allows to link the signal e�ciency ✏S with the mis-tagging rate of
background events ✏B.

In Sec. III we will use this trained network to test the performance in terms of ROC curves,
correlating the signal e�ciency and the mis-tagging rate.

Before we move to the performance study, we can get a feeling for what is happening inside
the trained ConvNet by looking at the output of the di↵erent layers in the case of fully pre-
processed images. In Fig. 5 we show the di↵erence of the averaged output for 100 signal and 100
background images. For each of those two categories, we require a classifier output of at least 0.8.
Each row illustrates the output of a convolutional layer. Signal-like red areas are typical for jet
images originating from top decays; blue areas are typical for backgrounds. The first layer seems
to consistently capture a well-separated second subjet, and some kernels of the later layers seem
to capture the third signal subjet in the right half-plane. However, one should keep in mind that
there is no one-to-one correspondence between the location in feature maps of later layers and the
pixels in the input image.

Figure 5. Averaged signal minus background for our default network and full pre-processing. The rows
correspond to ConvNet layers one to four. After two rows MaxPooling reduces the number of pixels by
roughly a factor of four. The columns indicate the feature maps one to eight. Red areas indicate signal-like
regions, blue areas indicate background-like regions.
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Figure 8. Left: performance of di↵erent DeepTop setups, including the curves shown in Fig. 3. Right:
performance of the neural network tagger compared to the QCD-based approaches SoftDrop plus N -
subjettiness and including the HEPTopTagger variables.

to the HEPTopTagger or SoftDrop picks up this additional information and also induces the
three-prong top decay structure into SoftDrop. We use N kT -axes, � = 1 and the reference
distance R0. A small value ⌧N indicates consistency with N or less substructure axes, so an N -
prong decays give rise to a small ratio ⌧N/⌧N�1. For top tagging ⌧3/⌧2 is particularly useful in
combination with QCD taggers in a multivariate setup [19]. The N -subjettiness variables ⌧j can
be defined based on the complete fat jet or based on the fat jet after applying the SoftDrop
criterion. Using ⌧j and ⌧ sdj in a multivariate analysis usually leads to optimal result.

B. Comparison

To benchmark the performance of ourDeepTopDNN, we compare its ROC curve with standard
Boosted Decision Trees based on the C/A jets using SoftDrop combined with N -subjettiness.
From Fig. 3 we know the spread of performance for the di↵erent network architectures for fully
pre-processed images. In Fig. 8 we see that minimal pre-processing actually leads to slightly better
results, because the combination or rotation and cropping described in Sec. II A leads to a small
loss in information. Altogether, the band of di↵erent machine learning results indicates how large
the spread of performance will be whenever for example binning issues in pT,fat are taken into
account, in which case we we would no longer be using the perfect network for each fat jet.

For our BDT we use GradientBoost in the Python package sklearn [28] with 200 trees, a
maximum depth of 2, a learning rate of 0.1, and a sub-sampling fraction of 90% for the kinematic
variables

{ msd,mfat, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (SoftDrop + N -subjettiness) , (16)

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental ap-
proaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition, we include the
HEPTopTagger2 information from filtering combined with a mass drop criterion,

{ msd,mfat,mrec, frec,�Ropt, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (MotherOfTaggers) . (17)
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SoftDrop + n-subjettiness:

MotherOfTaggers:
• Train a BDT on a set of  

standard tagging variables
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• Advantages:

• Symmetry / structure 

• Straightforward

• Potential Problems

• Resolution

• Sparsity

• How to encode 
complex  information



Performance 
Overview
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4.2 Preprocessing Studies

The e↵ect of multiple di↵erent preprocessing steps were studied to optimise the tagger

performance. Figure 6 illustrates the performance gain from each sequential preprocessing

step: trimming, scaling, translation, rotation and finally flipping. Each step has a positive

impact on overall performance, with the final flipping step improving the performance only

marginally. Table 2 summarises the performance increase following each preprocessing

stage for the AUC and rejection for the given signal e�ciency operating points.
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Figure 6. ROC curve for DNNs trained on reconstruction level jets after each successive prepro-
cessing step. The LHC 2016 pileup scenario was used.

Preprocessing step AUC
Rejection at signal e�ciency of

20% 50% 80%

Trimming only 0.827 45 9 3.3

After scaling 0.904 130 22 6.3

After translation 0.920 175 30 7.9

After rotation 0.933 325 43 9.6

After flip 0.934 365 45 9.8

Table 2. Area under the curve and background rejection factors for 20%, 50% and 80% signal
e�ciency for the DNNs trained on reconstruction level jets after each successive preprocessing step.
The LHC 2016 pileup scenario was used.

The e↵ect of trimming and jet constituent ordering was also investigated. Figure 7

shows the impact of the jet trimming on the ROC curve, with the same subsequent pre-

processing steps applied in all cases. Trimmed jets typically perform better at the high

background rejection operating point often desired in an analysis setting. Networks trained

on jets without trimming perform marginally better at the signal e�ciency operating points

– 11 –

SciPost Physics Submission

Figure 3: ROC curve for the new DeepTopLoLa tagger, compared to the QCD-inspired
MotherOfTaggers and the image-based DeepTop tagger [20]. In all cases we only use
calorimeter information for soft fat jets, pT,fat = 350 ... 450 GeV.

3.1 Calorimeter

We consider the two standard ranges, moderately boosted tops available in Standard Model
processes and highly boosted tops in resonance searches,

pT,fat = 350 ... 450 GeV

pT,fat = 1300 ... 1400 GeV . (8)

In Fig. 2 we show the number of calorimeter-based 4-vectors kµ,i as well as their ordered
mean transverse momentum for the soft and hard fat jet selections of Eq.(8). For the soft and
hard selections we have tested values N = 10 ... 60 and find the using the leading N = 40
calorimeter constituents completely saturates the tagging performance. The remaining entries
will typically be much softer than the top decay products and hence carry little signal or
background information from the hard process.

For the softer fat jets we use 180,000 signal and 180,000 background events to train the
network, 60,000 events each for tests during training, and 60,000 events each to estimate the
performance. For technical reason the harder fat jets rely on a 10% smaller sample.

The network includes the CoLa, the LoLa, and two fully connected hidden layers, one with
100 and one with 50 nodes. It is trained using Keras [32] with the Theano [33] back-end,
the Adam optimizer, and a learning rate of 0.001. Training terminates either after 200 epochs
or when the performance on the test sample does not improve for five epochs, typically after
several tens of epochs. † We independently train five copies of the network, and compare
their performances on the independent validation sample.

Because of a long history of tests and applications on data, top taggers are especially useful
to establish the performance of machine learning tools. In Fig. 3 we compare our DeepTo-
pLoLa tagger to earlier benchmarks for the softer of the two selections in Eq.(8): a BDT of

†Using this setup, the training for the softer fat jets takes less than 15 minutes in total on a Tesla K80 using
a p2.xlarge computing instance on Amazon Web Services.
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Figure 8. Performance of the neural network tagger compared to the QCD-based approaches
SoftDrop plus N -subjettiness and including the HEPTopTagger variables.

where mfat is the un-groomed mass of the fat jet. This is similar to standard experimental

approaches for our transverse momentum range pT,fat = 350 ... 400 GeV. In addition,

we include the HEPTopTagger2 information from filtering combined with a mass drop

criterion,

{ msd,mfat,mrec, frec,�Ropt, ⌧2, ⌧3, ⌧
sd
2 , ⌧ sd3 } (MotherOfTaggers) .

(3.5)

In figure 8 we compare these two QCD-based approaches with our best neural networks.

Firstly, we see that both QCD-based BDT analyses and the two neural network setups are

close in performance. Indeed, adding HEPTopTagger information slightly improves

the SoftDrop+N -subjettiness setup, reflecting the fact that our transverse momentum

range is close to the low-boost scenario where one should rely on the better-performing

HEPTopTagger. Second, we see that the di↵erence between the two pre-processing

scenarios is in the same range as the di↵erence between the di↵erent approaches. Running

the DeepTop framework over signal samples with a 2-prong W 0 decay to two jets with

mW 0 = mt and over signal samples with a shifted value of mt we have confirmed that the

neural network setup learns both, the number of decay subjets and the mass scale.

Following up on on the observation that the neural network and the QCD-based taggers

show similar performance in tagging a boosted top decay inside a fat jet, we can check what

kind of information is used in this distinction.

Both for the DNN and for the MotherOfTaggers BDT output we can study signal-

like learned patterns in actual signal events by cutting on the output label y corresponding

to the 30% most signal like events shown on the right of figure 3. Similarly, we can

require the 30% most background like events to test if the background patterns are learned

correctly. In addition, we can compare the kinematic distributions in both cases to the

– 14 –

DeepTop minimal

Training

Architecture

Preprocessing

Sample size
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Figure 4: Sequence of ROC curves (background rejection 1/✏B vs. tagging e�ciency ✏S) illustrating

the cumulative e↵ects of the various improvements to the DeepTop tagger, for the DeepTop jet sample.

Our final tagger including all the improvements is shown in orange.

ture, image preprocessing, sample size and color) to the DeepTop tagger in the preceding

sections, we are now ready to put them all together and quantify their cumulative ef-

fects on the tagger performance. Shown in figs. 4–6 and table 3 are ROC curves and

aggregate metrics characterizing these e↵ects. The baseline in these plots is always the

DeepTop minimal column in table 2, applied to the two di↵erent jet samples in table 1.

Each modification is then added cumulatively to this baseline. Here is a more detailed

breakdown (each entry here corresponds to moving from left to right sequentially in the

corresponding category of table 2):

• The end result of all of our improvements to the training (loss function and op-

timizer) is the blue curves in figs. 4-6. This gave the single largest boost to the

performance of all the di↵erent modifications we considered. Furthermore, we find

that over half of the improvement here is due solely to the smaller minibatch size.

16



Autoencoders
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Autoencoder

• Self-supervised learning

• Bottleneck with compressed representation

• Dimension reduction

• Denoising

• Regularizers

f(x) g(f(x))

L = (ŷ � g(f(x)))2

kvfrans
deeplearningbook.org !12

http://deeplearningbook.org


Autoencoder for Physics

• Can we find new physics without knowing 
what to look for?

• Train on pure QCD light quark/gluon jets 
and apply to top tagging

• Top quarks identified as anomaly
QCD or What?
T Heimel, GK, T Plehn, JM Thompson, 1808.08979
Searching for New Physics with Deep Autoencoders
M Farina, Y Nakai, D Shih, 1808.08992 !13

Autoencoder

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)

3

Input

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)

3

Output

Xij eXij

LAuto =
X

Pixels ij

⇣
Xij � eXij

⌘



Architecture

Convolutional network

SciPost Physics Submission

Figure 4: Left: ROC curves for the 4-vector-based or LoLa autoencoder identifying anoma-
lous top jets for di↵erent bottleneck sizes. Right: comparison of the ROC curves for the
image-based and the 4-vector-based autoencoders. The widths of the lines show the variation
based on ten independent test samples for fixed training.

second layer. The loss function is

Lauto =
40X

j=1

3X

i=0

⇣
k̃ini,j � k̃autoi,j

⌘2
. (6)

As for the images we use the PReLU activation function, except for the last layer with its
linear activation function, and the Adam optimizer for the learning rate [37].

In the left panel of Fig. 4 we show the ROC curves for the 4-vector-based tagger for di↵erent
choices of the bottleneck size. We now find the best result for a very small bottleneck with
at most 10 units. The stable AUC value is around 0.92 with a loss around 10�5 per pixel.
Such small functional bottlenecks reflect the fact that with the CoLa/LoLa structure we
have encoded a lot of the relevant information in appropriate physics terms [13].

Finally, in the right panel of Fig. 4 we compare the best-performing image-based and
4-momentum-based autoencoders. The widths of the lines are again generated by evaluating
the network on ten independent test samples. The main feature in this plot is that the
LoLa-autoencoder does better than the image-based autoencoder. This is a result of the
smaller possible bottleneck size, because the LoLa architecture is optimized to extract the
leading discriminating features most e�ciently. While this gives an advantage to the pure
autoencoder, we will see the other side of the same medal in the next section.

2.3 De-correlating the mass

Neural networks separating signal and background jets after fully supervised training on
labelled data are, in theory, straightforward to calibrate and understand. The problem at
the LHC is that we hardly ever have enough labelled data to train such networks for relevant
new physics searches. Our autoencoder responds to this problem by limiting the training
to QCD jets only and by only asking if a given data set is described well by QCD or any

7

Autoencoder will also work with other 
network architectures. Tested physics 

inspired, constituent based LoLa* 
architecture.

* from: Deep-learning Top Taggers & No End to QCD
A Butter, GK, T Plehn, M Russell
1707.08966



What about mass?

• Without additional 
constraints the autoencoder 
also learns the kinematics of 
the training sample

• How to avoid?

!15

SciPost Physics Submission

Figure 5: Left: jet mass distributions from the image-based autoencoder applied to QCD
jets. The di↵erent lines show the full sample up to the 5% least QCD-like jets, defined by the
autoencoder loss function. Right: the same jet mass distributions, but for the QCD-trained
adversarial autoencoder network.

number of QCD jets. On each side we add overflow bins which are not populated by QCD
jets. The task of the adversary is not to extract the exact jet mass value, but to determine the
probabilities for the jet mass to fall into each bin. This statistical interpretation requires a
multi-label cross entropy as the adversary loss function [24]. All layers use the ReLU activation
function except for the last layer, where a SoftMax activation function guarantees that all 12
probabilities sum to one. When training on the combined loss function, each epoch is split
into batches of size 128. For each batch we first train the autoencoder using the combined
loss function of Eq.(8) and then train the adversary with only the adversary loss function.
The size of the Lagrangian multiplier is chosen such that the two contributions to the loss
function are of similar size, i.e. it balances the de-correlation vs the discrimination power of
the network. For instance, the jet mass distribution for � = 5 · 10�4, shown in the right panel
of Fig. 5, indicates that the background shaping is indeed largely gone.

To study the interplay of the mass de-correlation with the performance of the adversarial
autoencoder we show results for three values of � in Fig. 6. For increasing values of � the
background shaping indeed improves. On the other hand, we can illustrate the performance
of the network by testing on QCD data with 3% top jets injected. For the full sample we
indeed see a hint of top jets around mj = mt in all three panels of Fig. 6. We can then extract
the 5% least QCD-like jets, which should include most of the top jets. What we find is that
the number of top jets in this selection is diluted from the maximum expected 3/5 of the
5% least QCD-like jets. This dilution grows with �, because it is an e↵ect of taking out the
jet mass as the strongest discriminator from the network. The performance drop is given as
AUC values and detailed in the right panel of Fig. 6, where we show the ROC curves for the
adversarial autoencoder. As before, we evaluate the network on 10 independent test samples
of 20,000 QCD jets and 20,000 top jets.

For the interplay between the mass de-correlation and the performance of the network
the ROC curves are not the final word, though. Because the jet mass is removed from the
autoencoder, we now see a clear top mass peak in the least QCD-like selection. This peak

9



Adversarial Training
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Combined Setup

 17

Autoencoder

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)

3

Input

(a) average over 100k images for images01 (include image)

(b) average over 100k images for images02 (include image)

(c) average over 100k images for images03 (include image)

3

Output

Xij eXij

Adversary

fM

LAuto =
X

Pixels ij

⇣
Xij � eXij

⌘

LAdv = CCE
⇣
M, fM(Xij � eXij)

⌘

L = LAuto � �LAdv



Mass Sculpting
• Counteract with adversary:

• Tune mass dependency with Lagrange multiplier

!18

L = LAuto � �LAdv



Signal contamination

• Procedure works also when signal  
is present in training data

• This means a search for exotic 
new physics with unknown  
shower patterns (dark showers)  
could be  done using  data-only 
training

!19



Dark Showers
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Recap

• We now have a tool that can identify anomalous jets..

• ..purely trained on data in an unsupervised way

• ..decorrelated from arbitrary variables (like mass)

• Potential usecase:

• Dark shower jets

!21

Dark multi-jet 
 shower



Model

• Heavy quark      pair-produced

• Decay to SM partner + dark boson

• Hadronise into dark mesons    (stable or not)

• Assume:

• Dark SU(3)C,      =0.1

•  

•       = 200 GeV

!22

Visible Effects of Invisible Hidden Valley Radiation
L Carloni, T Sjostrand, JHEP 1009 (2010)
Discerning Secluded Sector gauge structures
L Carloni, J Rathsman, T Sjostrand, JHEP 1104 
(2011)

SciPost Physics Submission

Figure 10: Autoencoder applied to a set of dark shower signals. Upper left: numbers of
constituents for the dark shower models. Upper right: truth-level jet mass distributions
for the di↵erent models. Lower left: ROC curves for the autoencoders with and without
adversary. Lower right: jet mass distributions from the adversarial autoencoder trained on
pure QCD.

Similar to the top and heavy scalar cases we use a dark quark with mass mqv = 200 GeV. For
a small meson mass of m⇡v = 10 GeV we see in the upper panels of Fig. 10 that the number
of constituents and the jet mass are similar to the other new physics scenarios in the paper.
In addition, we choose a more mass-degenerate case of mqv = 200 GeV and m⇡v = 100 GeV
to test what happens in the absence of a peak in the jet mass altogether.

In the lower panels of Fig. 10 we first show the performance of the autoencoder without
adversary. For both models we find excellent performance with AUC values of 0.78 ... 0.79. In
the direct comparison, the autoencoder can more easily reject the peaked jet mass distribution,
but at high e�ciencies it is hard to separate the low-mass peak from QCD. For the adversarial
network with � = 10�2 we now use 50 jet mass bins instead of the 10 used before. We find
that the performance drops to a level comparable with the heavy scalar case with AUC value
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Figure 10: Autoencoder applied to a set of dark shower signals. Upper left: numbers of
constituents for the dark shower models. Upper right: truth-level jet mass distributions
for the di↵erent models. Lower left: ROC curves for the autoencoders with and without
adversary. Lower right: jet mass distributions from the adversarial autoencoder trained on
pure QCD.

Similar to the top and heavy scalar cases we use a dark quark with mass mqv = 200 GeV. For
a small meson mass of m⇡v = 10 GeV we see in the upper panels of Fig. 10 that the number
of constituents and the jet mass are similar to the other new physics scenarios in the paper.
In addition, we choose a more mass-degenerate case of mqv = 200 GeV and m⇡v = 100 GeV
to test what happens in the absence of a peak in the jet mass altogether.

In the lower panels of Fig. 10 we first show the performance of the autoencoder without
adversary. For both models we find excellent performance with AUC values of 0.78 ... 0.79. In
the direct comparison, the autoencoder can more easily reject the peaked jet mass distribution,
but at high e�ciencies it is hard to separate the low-mass peak from QCD. For the adversarial
network with � = 10�2 we now use 50 jet mass bins instead of the 10 used before. We find
that the performance drops to a level comparable with the heavy scalar case with AUC value
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• Identify dark showers vs QCD
• Sensitivity will depend on model parameters



Conclusions
• Propose a new method based on unsupervised deep networks 

find non-SM physics as anomaly

• Can be trained from data and made independent of mass

• Explained for images, but can work with any neural network 
architecture

• Anti-QCD tagger: Orthogonal approach to dedicated searches

!24

Thank you!



Backup
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A Very Simple Network
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y = f(f(x1)w1 + f(x2)w2)

f(x) = ⇥(x) · x



Activation Functions
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Softmax 
(for final classification layer)



How do networks learn?
• Backpropagation + Gradient descent

• Pass input (x1, x2) to ANN

• Calculate output (  ) and difference to true value (y)  
This is the loss function L

• Find gradient of loss function with respect to weights 

• Use gradient to find new weights

 28

ŷ

Regression Problem:

L(y, ŷ) = (y � ŷ)2

wt+1 = wt � ⌘
@L

@wt
⌘ wt � ⌘rL(wt)



Optimisers
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(stochastic/batched) gradient descent

wt+1 = wt � ⌘rL(wt)

wt+1 = wt � ⌘rL(wt) + ↵�wt
+ momentum term

mt+1 = �1mt + (1� �1)rL

vt+1 = �2vt + (1� �2)(rL)2

m̂t+1 =
mt+1

1� �t
1

v̂t+1 =
vt+1

1� �t
2

wt+1 = wt � ⌘
m̂t+1p
m̂t+1 + ✏

Adam 
(a good starting point)



Classification
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• Entropy: Optimal number of bits needed to encode 
when the probability distribution is known

S = �
X

pi ln pi

• Cross Entropy: We do not know the true 
probability

S = �
X

pi ln p̂i

L =
X

Samples

�ys ln ŷs � (1� ys) ln(1� ŷs)

True class  
image is cat: 0
image is dog: 1

Predicted class  
DNN output between 0 and 1

Minimize cross entropy: approximate true distribution


