Proton Driven Plasma Wakefield Acceleration

Introduction to meeting

17-12-2009

Allen Caldwell

Simulation study

Nature Physics **5, 363 - 367 (2009)**

Simulation

Table 1: Table of parameters for the simulation.

Parameter	Symbol	Value	Units
Protons in Drive Bunch	N_P	10^{11}	
Proton energy	E_P	1	TeV
Initial Proton momentum spread	σ_p/p	0.1	
Initial Proton longitudinal spread	σ_Z	100	μ m
Initial Proton bunch angular spread	$\sigma_{ heta}$	0.03	mrad
Initial Proton bunch transverse size	$\sigma_{X,Y}$	0.4	mm
Electrons injected in witness bunch	N_e	$1.5 \cdot 10^{10}$	
Energy of electrons in witness bunch	E_e	10	GeV
free electron density	n_p	$6 \cdot 10^{14}$	cm^{-3}
Plasma wavelength	λ_p	1.35	mm
Magnetic field gradient		1000	T/m
Magnet length		0.7	m

A 1 TeV proton beam, compressed to 100 microns but with 10% momentum spread, would allow to create a 600 GeV electron beam.

Magnetic bunch compression (BC)

- ☐ Beam compression can be achieved:
 - (1) by introducing an energy-position correlation along the bunch with an RF section at zero-crossing of voltage
 - (2) and passing beam through a region where path length is energy dependent: this is generated by bending magnets to create dispersive regions.

☐ To compress a bunch longitudinally, trajectory in dispersive region must be shorter for tail of the bunch than it is for the head.

Phase space of beam

See A. Caldwell, G. Xia et al., Preliminary study of proton driven plasma wakefield acceleration, Proceedings of PAC09, May 3-8, 2009, Vancouver, Canada

Simulation studies will continue

Also, concept for proton bunch compression needs to be worked out – this is the key for the long term success.

But, we also want to start an experimental program and perform a demonstration experiment at CERN

Accelerator chain of CERN (operating or approved projects)

TT61 tunnel

Status today – after partial dismantling of the old line

- Services and infrastructure still in place from the old beam line
- However the power supplies have been dismounted and used as spares for the SPS North Area
- Steep slope 6-7%

PPA@CERN

Demonstration experiment – possible sequence

- Plasma cell + diagnostics: expect to see modulation of proton bunch by plasma
- Plasma cell + seeded modulation to add reproducibility and stronger fields
- Plasma cell + bunch compression: generation of GeV/m fields, demonstration of scaling principles with protons
- 4. Plasma cell + bunch compression + electron injection: demonstration of electron acceleration

Plasma modulation of SPS beam

Simulation by A. Pukhov, U. Düsseldorf

 r_b =1 mm, n_p =1 10¹¹, σ_z =12 cm, E_p =450 GeV, n_0 = 1 10¹⁴ cm⁻³ (λ_p =3mm) Length of simulation=8.4 m

Possible Experimental Layout

Foils for coherent transition radiation (CTR)

CTR

Proton bunch

 $N_P \approx 10^{11}$ 450 GeV

 $\sigma_z \approx 12 \text{ cm}$

 $\sigma_r \approx 1 \text{ mm}$

Modulated proton bunch

$$\lambda = 1 - 3 \text{ mm}$$

$$\sigma_r \approx 1 - 5 \text{ mm}$$

$$E = 449 - 451 \text{ GeV}$$

Coherent transition radiation (CTR) → frequency domain Electrooptical sampling

time domain information

Beam profile measurement

Perhaps streak camera to also get time dependence

Because of large bunch-bunch time jitter and the very long acquisition times (low reprate) -> Single-shot sampling

- Using a (linear) chirped femtosecond laser pulse as sampling signal
- The pulse is stretched (up to 10ps?) in a dispersive medium
- Strong relation between time and wavelength

- The output spectrum is modulated in time by the electric field from the beam
- The output signal is split using a grating and detected by a CCD

Possible Timeline

	2010	2011	2012	2013	2014	2015
Approval process CERN	\longrightarrow					
Technical Design Beamline assembly Plasma cell R&D Construct plasma cell Optical sampling R&D Optical sampling assembl Spectrometer R&D Spectrometer construction			->			
Measure beam modulations	on J		_	→		
design bunch compressio Prepare bunch compressi				\rightarrow		
Compressed bunch expts				_	→	
Design, build electron injection		_			\rightarrow	
Accelerate electrons					_	→

The path to approval at CERN goes through the SPSC

- Submit ca 10 page Letter of Intent. Contents:
 - motivation
 - sketch of experiment
 - beam needs
 - estimated cost
 - estimate of manpower
 - collaboration & task assignment
- Lol should be submitted 2-4 weeks prior to an SPSC meeting
- Times of next meetings: April 13,14 June 29,30
- SPSC assigns referees & discussions ensue
- In case of positive evaluation by referees & committee, request detailed proposal
- Detailed proposal:
 - Comprehensive description of project
 - timeline
 - financial contributions from participating institutes

This meeting:

- agree on what we want to accomplish with a first round of experiments
- list the subprojects involved and allocation of people to subprojects
- get some idea of the timeline
- set a target date for the LoI submission
- discuss ideas on bunch compression
- set parameter ranges for beam, plasma cell, diagnostics, ...

A first set of questions:

- 1. How long can the plasma cell be?
- 2. What density range is possible for the plasma?
- 3. Interesting length for modulation studies?
- 4. Long plasma cell may require quadrupole focusing compatible with beamline?
- 5. Most promising plasma cell concept follow more than one?
- 6. What are the possibilities to shape the proton beam? (hard edge)
- 7. Can the proton bunch be pre-modulated? How?
- 8. Ideas on proton bunch compression can we vary SPS parameters (compaction factor, RF) during down times of LHC?
- 9. What diagnostics should be there at the beginning?
- 10. Which locations are available for equipment what are the space/power/... restrictions?
- 11. What types of beam requirements do we anticipate (# bunches/min at maximum), total number/day, number/year
- 12. What are the limits set by radiation protection?

PPA09 Workshop @ CERN

Thursday December 17

11:00-11:45 11:45-12:15

12:15-12:45

12:45-14:15

14:15-16:00

U		
9:00-9:15	Introduction & goal of meeting	A. Caldwell
9:15-10:00	Overview of Plasma Wakefield Generation	C. Joshi
10:00-10:45	Experiments in beam driven PWA	P. Muggli
10:45-11:15	Coffee	
11:15-11:45	Experimental techniques at FLASH	B. Schmidt
11:45-12:15	PS & SPS beamlines at CERN	I. Efthymiopoulos
12:15-12:45	Possible Layout of Experiment at the SPS	R. Assmann
12:45-14:15	Lunch	
14:15-14:45	Accelerator physics, optics	F. Zimmermann
	and instrumentation challenges	
14:45-15:15	Comments on transfer line work	B. $Goddard + M. Meddahi$
15:15-17:00	visit SPS beamline	
17:00-18:30	Coffee/Discussion	
7.1 7.1 1.1		
Friday December 18		
9:00-9:45	Proton Driven PWA, simulations for PS & SPS	Δ Pukhov
9:45-10:30	,	G. Xia
	Proton Bunch Compression	G. Ala
10:30-11:00	coffee	

K. Lotov

C. Joshi

O. Grulke

Plasma wakefields via modulation

Helicon plasma cell concept

lunch

Plasma cell design & operation at SLAC

Discussion on task list, preparation of LoI