Optical transient surveys of today and tomorrow: machine learning applications Stephen Smartt

Stephen Smartt
Queen's University Belfast

Ken Smith, Dave Young
Darryl Wright
Amanda Ibsen

ZOONIVERSE

The Pan-STARRS Sky

This is a gri colour image of the 3pi Steradian survey. Image quality is ~ 1 arcsec, with 0.256" sampling over 30,000 square degrees or about 6 Petapixels (1012) with over 100 epochs.

ATLAS sky: 50 sq degree survey facility in Hawaii - all sky, every 2 nights

BOTS

LIGO GW

8877

4688

2137

610

550

GaiaAlerts

ASAS-SN

ATLAS

iPTF

Physics of the extreme

- Radiative transfer
- Atomic physics (data)
- Nuclear reaction and decay rates
- Accretion/magneto-rotational power

Transient sky populations

Image Credit: S. Kulkarni, Caltech

The Universe's degenerates

White dwarfs

Earth radius, 6371 km m = 1.4M_☉

 $\rho = 10^4 \text{ kg/cm}^3$

Neutron stars

10km radius

$$m = 1.4 - 2 M_{\odot}$$

$$\rho = 6 \times 10^{11} \text{ kg/cm}^3$$

Black holes

 $m > 2 M_{\odot}$

$$R_s = \frac{2GM}{c^2}$$

Typical data frame

Most common "source"? 2nd most common source (aka "Vermin of the skies")? 3rd most common source ?

Machine Learning to junk the bogus

Trained Classifier applied to hourly incoming stream of objects

Objects (up to 6 images per object) with median RealBogus Score < Decision Boundary rejected

Best results to date

Classification - host object

Star or galaxy and separation

- angular separation crossmatch radius
- physical separation crossmatch radius (if redshift)
- source magnitude filtering
- magnitude dependent search radii for bright stars and galaxies

Decision Tree Classifications & Reliabilities

- transient given a predicted classification based on the parameters of the catalogued source it matches against
- transients can be given multiple classifications which are later ranked
- a transient can either be **synonymous** with (within 0.5"), **associated** with (>0.5" away) or **annotated** by a catalogued source

host info

exact sdss location sdss nearest object

contextual classification:

SN - The transient is possibly

associated with SDSS

J161600.57+221608.2; a 15.60 mag

galaxy found in the NED catalogue.

It's located 3.46" S, 4.86" W (1.7 Kpc)

from the galaxy centre. A host

z=0.014 implies a transient M=

-20.41

https://github.com/thespacedoctor/sherlock

Lightcurve Classification of transients

Lochner, McEwan, Peiris, Lahav, Winter 2016 Extract features + ML on features

Achieved: 90% pure & 84% complete

Missed detection rate of 1%, false positive rate ~ 20-30%.

Large Synoptic Survey Telescope

Slide credit: Steve Kahn LSST@Europe3 Lyon, June 2018

Large Synoptic Survey Telescope

Slide credit: Steve Kahn LSST@Europe3 Lyon, June 2018

ATLAS Field of View

LSST 10 square 5.40 degrees

Pan-STARRS 1

LSST - 10⁷ alerts per day

Junk ML
Vermin (asteroid) spatial coincidence or trail

Star
AGN
Nuclear Transient
Supernova
orphan

Boosted Decision Tree

Summary: scratching the surface of potential for LSST

- Multiple machine learning to provide probability of physical classification
- Identify the outliers
- Real-time, every day ability to trigger rapid follow-up
- Cross match with radio, x-ray, gammaray surveys, LIGO-Virgo sky localisation maps for GW
- Enormous discovery potential in data, but completeness and probabilistic approach essential
- Understand the population repeatability and completeness

GW170817

ATLAS + Pan-STARRS Machine Learning Trainer Pipeline

Automated End to End Training - User just specifies which nights to be used

Ibsen & Smith - see https://github.com/aibsen/ATLAS-ML