

Fast inference of jet substructure classifiers with FPGAs

Zhenbin Wu (University of Illinois at Chicago)

Machine Learning for Jet Physics Nov. 15th, 2018

Personal

Jennifer Ngadiuba, Vladimir Loncar, Maurizio Pierini

Fermilab

Javier Duarte, Burt Holzman, Sergo Jindariani, Ben Kreis, Mia Liu, Kevin Pedro, Ryan Rivera, Nhan Tran, Aris Tsaris

HawkEye³⁶⁰ Edward Kreinar

Sioni Summer

Song Han, Phil Harris, Dylan Rankin

Zhenbin Wu

Mark Neubauer, Markus Atkinso

Machine Learning in Jets

- Learning optimized nonlinear functions of many inputs for performing difficult tasks from (real or simulated) data
- Many successes in Jets: identification of b-quark jets, Higgs candidates, W/Z/top taggers ...

Typically applied offline, not online (in hardware trigger)

High Level Trigger (software, CPU based) Decision in ~100 ms

Can we inference ML fast enough for trigger?

FPGAs and High Level Synthesis

- Field Programmable Gate Arrays
 - Reprogrammable fabric of logic cells embedded with DSPs, BRAMs; high speed IO, etc.
 - *logic cells* (O(M)): circuit block for logic operation
 - Digital Signal Processors (DSPs) used for multiplication ~(O(K))
 - BRAMs : on chip memory
 - Massively parallel
 - Low power consumption (relative to CPU/ GPU)
- High Level Synthesis firmware
 - C-style code that generates traditional RTL code for FPGAs
 - C code with additional directives
 - Faster development for physicists

module dut(rst, clk, q); input rst; input clk; output q; reg [7:0] c; always @ (posedge clk) begin if (rst == 1b'1) begin c <= 8'b00000000; end else begin c <= c + 1; end assign q = c;

```
endmodule
```

NN Inference

- NN inference = multiplication/addition and precomputed activation functions (look up table)
- The flexibility of FPGA suits the need of NN inference
- Leave the training of NN for GPU+CPU

Case Study: Jet Tagging

Jet Substructure Inputs

 Illustrative example, using high level-feature, not realistic for FPGA

Jet Substructure Inputs

- Excited to see development from this workshop
- Looking for efficient and performant NN for substructure

Case Study: Jet Substructure

- 5 output multi-classifier
 - Does a jet originate from a

qu: top

3-layer model: no reg., no pruning

Compression

- FPGAs provide huge flexibility, but constrained by input bandwidth, limited resources on chip, latency requirement
- Compression techniques remove redundancy in model
 - Train with L₁ regularization
 - $L_{\lambda}(\mathbf{w}) = L(\mathbf{w}) + \lambda \sum |w_i|$
 - Downweights unimportant synapses
 - Histograms on right: [weight] / (max [weight])
 - Remove / fix to zero lowest magnitude weights (per layer)
 - Removing synapses
- After 7 iteration, 70% reduction with no loss in performance

For further reading: <u>arXiv:1510.00149</u>

Quantization

- hls4ml fc3 relu Fixed point data types 70 output softmax fc2 relu 60 fc1 relu Faster and lower in FPGA-resource use than floating point **Number of Weights** 50 40 ap_fixed<width,integer> 30 0101.1011101010 20 integer fractional width 10 ap fixed<14,4> 0 2^{-5} 2^{-3} 2-7 2^{-1} 2^{1}
 - Recipe for minimizing number of bits:
 - Choose number of integer bits to avoid underflows/overflows that lead to drastic performance loss
 - Choose number of fractional bits to reach desired performance

integer bits = 2 + 1 for sign (need more for neurons)

Work in progress: Binary/Ternary Network

Absolute Value of Weights

Parallelization

- Configurable "reuse factor" = number of times a multiplier is used to do a computation
- Trade-off between latency and resource usage

Compression, Quantization, and Parallelization made easy in

high level synthesis for machine learning

hls4ml case study

Examine compression, quantization, and parallelization in jet substructure case study

- Firmware block from hls4ml ready in minutes along with preliminary FPGA resource usage estimates
- Final "implementation" gives exact resource usage (discussed later)
- Setup
 - Xilinx Vivado 2017.2
 - HLS target clock frequency: 200 MHz (5 clocks/BX)
 - Kintex Ultrascale, xcku115-flvb2104-2-i
 - 1.4M logic cells, 5,520 DSPs

Quantization & Compression

ap_fixed<width,integer>

0101.1011101010

Scan fractional bits

- DSPs (used for multiplication) will often be limiting resource
 - DSPs have a max size for input (e.g. 25x18 bits), so number of DSPs per multiplication changes with precision

70% compression ~ 70% fewer DSPs

Reuse Factor

Trade off between resource and latency
NN inference within ~O(100)ns

Firmware implementation

- Final implementation gives actual resource usage and timing estimate
- Implement in a minimal design, simply routing all firmware block's inputs and outputs to FPGA available pins
- Power usage increases with precision, it goes down for less throughput (higher reuse factor)

X0Y0	X071	X0Y2	X0Y3	X0Y4
XIV D		NIY.	X1Y3	X1Y4
		x 212	x2Y3	X2Y4
хзүр	Xex	X 3 Y 2	X 3Y 3	X3Y4
X4Y 0	X4Y1	X4Y2	X4Y3	X4Y4
X5Y0	X5¥1	X5Y2	X5Y3	X5Y4 R

hls4ml New Developments

- Beta version is live! <u>arXiv:1804.06913</u>
- Work in progress:
 - LHC/DUNE applications
 - More network architectures:
 - Boosted Decision Tree (testing)
 - Binary Dense NN (testing)
 - Conv1D, 2D (testing)
 - BatchNormalization (prototyping)
 - LSTM, GRU (prototyping)
 - Graph-based NN (prototyping)

Fast inference of deep neural networks in FPGAs for particle physics

Javier Duarte^{*a*}, Song Han^{*b*}, Philip Harris^{*b*}, Sergo Jindariani^{*a*}, Edward Kreinar^{*c*}, Benjamin Kreis^{*a*}, Jennifer Ngadiuba^{*d*}, Maurizio Pierini^{*d*}, Ryan Rivera^{*a*}, Nhan Tran^{*a*}, Zhenbin Wu^{*e*}

^a Fermi National Accelerator Laboratory, Batavia, IL 60510, USA
 ^b Massachusetts Institute of Technology, Cambridge, MA 02139, USA
 ^c HawkEye360, Herndon, VA 20170, USA
 ^d CERN, CH-1211 Geneva 23, Switzerland
 ^e University of Illinois at Chicago, Chicago, IL 60607, USA

E-mail: hls4ml.help@gmail.com

<u>hls-fpga-machine-</u> <u>learning.github.io/hls4ml</u>

Already at Cloud Scale

Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

- Brainwave provides a full services at scale, multi-FPGA/CPU fabric
- Demonstrated large improvement in processing time for Bing searches
- Caveat: only selected DNN models currently available (ResNet50)

SONIC in CMS

- Services for Optimized Network Inference on Coprocessors
 - a framework to exploit cloud resources for on-demand inference
- CPU runs "locally" and sends data to the cloud system, using FPGAs for inference
- Good performance in initial tests with ResNet50 on Microsoft Azure
 - \circ "remote": cmslpc @ FNAL to Azure (VA), <time> = 56 ms
 - $\circ \text{``onprem'': run CMSSW on Azure VM,} \quad \langle \text{time} \rangle = 10 \text{ ms} \\ (\sim 2 \text{ ms on FPGA, rest is classifying and I/O})$
 - CPU (cmslpc): 1.75 sec
 - (6 min to load ResNet50 session)

Summary

- hls4ml, translates machine learning inference into firmware
 - aims to be a flexible tool to implement NN with low latency
 - paper: <u>arxiv.1804.06913</u>
- SONIC: exploring applications for acceleration with CPU-FPGA coprocessors
 - Tested with Microsoft Azure
 - Testing with Amazon AWS FPGA (F1) instance

- ResNet50: 25M parameters, 7B operations
- Examples of large networks used in CMS:
 - \circ DeepAK8, 500K parameters, 15M operations
 - DeepDoubleB, 40K parameters, 700K operations
- While HEP NN is relative small compared to commercial NN, we should explore the most efficient way to get good jet substructure performance & economical

hls4ml program flow

- IOType: parallelize or serialize
- ReuseFactor: how much to parallelize
- DefaultPrecision: inputs, weights, biases

```
my-hls-test/:
build_prj.tcl
firmware
myproject_test.cpp
```

vivado_hls -f build_prj.tcl, produce a firmware block in ~m

Reuse comes at a cost

Firmware implementation

Other Resources

- Fairly linear increase with precision
- Small percentage of total available
 - But could matter depending on what else is on FPGA
- Spikes present at steep transitions in DSP usage not observed in implementation

TABLE IV:	Layer-	and	module-wise	performance	on	the
GoogLeNet a	model.					

Layer	Ops	Theor.	Actual	Perf.	Eff.
#	(M-ops)	Time (ms)	Time (ms)	(G-ops/s)	%
Layer 1	236	1.84	2.50	94.4	73.7%
Layer 2	756	5.49	5.64	134.0	97.3%
Inception 3a	256	2.25	2.59	98.9	86.9%
Inception 3b	609	4.98	5.22	116.6	95.4%
Inception 4a	147	1.28	1.45	101.5	88.3%
Inception 4b	176	1.49	1.69	104.0	88.2%
inception 4c	214	1.66	1.87	114.4	88.8%
inception 4d	237	1.92	2.03	116.8	94.6%
Ineption 4e	340	2.68	2.84	119.7	94.4%
Inception 5a	112	0.78	0.83	134.9	94.0%
Inception 5b	141	1.04	1.09	129.7	95.4%
Total	3224	25.41	27.75	116.2	91.6%

TABLE VI: A comparison of throughput and efficiency across recent works in literature.

	Eyeriss[26]		Zhang[27]	Caffeine[18]	Qiu[19]	HWCE[28]		Snowflake	
	AlexNet	VGG	AlexNet	VGG	VGG	AlexNet	AlexNet	GoogLeNet	ResNet-50
Platform	65nm CMOS	65nm CMOS	VX485T	KU060	Zynq 7045				
Clock (MHz)	200	200	100	200	150	100	250	250	250
Precision	16-bit fixed	16-bit fixed	32-bit float	16-bit fixed					
MAC Units	168	168	448	1058	780	800	256	256	256
Actual Perf. (G-ops/s)	46.1	24.5	61.6	310.0	187.8	140.8	120.3	116.2	122.3
Peak Perf. (G-ops/s)	67.2	67.2	89.6	423.2	234	160	128	128	128
Frame Rate (fps)	38.4	0.8	51.3	258.3	6.3	117.3	100.3	36.3	17.7
Power (W)	0.28	0.24	18.61	25	9.63	-	9.48	9.53	9.61
Energy Eff. (G-ops/J)	164.6	102.1	3.3	12.4	19.5	-	12.7	12.2	12.7
Computational Eff.	69%	36%	69%	73%	80%	88%	94%	91%	95%

27.75 ms latency

Gokhale et al. arXiv:1708.02579 (2017)

Intel, commercially available today

Targeted Workloads

- Big data analytics
- Artificial intelligence
- Video transcoding
- Cyber security
- High-performance computing (HPC), such as genomics and oil and gas
- Financial technology, or FinTech

libraries becoming available

New Possibilities for LHC

- Hardware:
 - FPGA accelerators on-site for HLT
 - FPGA accelerators in **offline** computing resources
 - Cloud: Microsoft, Amazon, etc.
- New possibilities:
 - 1. Much larger networks possible
 - 2. Migrate upstream
 - E.g. offline to HLT
 - 3. Recast bottlenecks into ML problems

 E.g. tracking, imagine algorithms in talks by Jean-Roch Vlimant and Steven Farrell done in FPGAs

Source: Bob Broderson, Berkeley Wireless group (via Andrew Putnam)

Kintex[®] UltraScale[™] FPGAs

		Device Name	KU025 ⁽¹⁾	KU035	KU040	KU060	KU085	KU095	KU115
		System Logic Cells (K)	318	444	530	726	1,088	1,176	1,451
Logic Resources		CLB Flip-Flops		406,256	484,800	663,360	995,040	1,075,200	1,326,720
		CLB LUTs	145,440	203,128	242,400	331,680	497,520	537,600	663,360
	Maximum	Distributed RAM (Kb)	4,230	5,908	7,050	9,180	13,770	4,800	18,360
Memory Resources	Block RAM/FIF	FO w/ECC (36Kb each)	360	540	600	1,080	1,620	1,680	2,160
Memory Resources	Block R	RAM/FIFO (18Kb each)	720	1,080	1,200	2,160	3,240	3,360	4,320
	-	Total Block RAM (Mb)	12.7	19.0	21.1	38.0	56.9	59.1	75.9
Clock Resources	CI	MT (1 MMCM, 2 PLLs)	6	10	10	12	22	16	24
CIOCK RESOURCES		I/O DLL	24	40	40	48	56	64	64
	Maximum	Single-Ended HP I/Os	208	416	416	520	572	650	676
I/O Resources	Maximum Di	fferential HP I/O Pairs	96	192	192	240	264	288	312
1, C 110001000	Maximum	Single-Ended HR I/Os	104	104	104	104	104	52	156
	Maximum Di	fferential HR I/O Pairs	48	48	48	48	56	24	72
		DSP Slices	1,152	1,700	1,920	2,760	4,100	768	5,520
		System Monitor	1	1	1	1	2	1	2
Integrated IP		PCle [®] Gen1/2/3	1	2	3	3	4	4	6
Resources	Interlaken		0	0	0	0	0	2	0
		100G Ethernet		0	0	0	0	2	0
	16.3Gb/s Transceivers (GTH/GTY)		12	16	20	32	56	64 ⁽²⁾	64
	Commercial		-1	-1	-1	-1	-1	-1	-1
Speed Grades		Extended	-2	-2 -3	-2 -3	-2 -3	-2 -3	-2	-2 -3
		Industrial	-1 -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -1L -2	-1 -2	-1 -1L -2
	Package Package Dimensions Footprint ^(3, 4, 5, 6) (mm)					HR I/O, HP I,	/O, GTH/GTY		
	A784 ⁽⁷⁾	23x23 ⁽⁸⁾		104, 364, 8	104, 364, 8				
	A676 ⁽⁷⁾	27x27		104, 208, 16	104, 208, 16				
	A900 ⁽⁷⁾	31x31		104, 364, 16	104, 364, 16				
	A1156	35x35	104, 208, 12	104, 416, 16	104, 416, 20	104, 416, 28		52, 468, 28	
	A1517	40x40				104, 520, 32	104, 520, 48		104, 520, 48
	C1517	40x40						52, 468, 40	
Footprint Compatible with	D1517	40x40							104, 234, 64
	B1760	42.5x42.5					104, 572, 44	52, 650, 48	104, 598, 52
Devices	A2104	47.5x47.5							156, 676, 52
Devices	B2104	47.5x47.5						52, 650, 64	104, 598, 64
	D1924	45x45							156, 676, 52
	F1924	45x45					104, 520, 56		104, 624, 64

Notes:

1. Certain advanced configuration features are not supported in the KU025. Refer to the Configuring FPGAs section in DS890, UltraScale Architecture and Product Overview.

2. GTY transceivers in KU095 devices support data rates up to 16.3Gb/s.

3. Packages with the same package footprint designator, e.g., A2104, are footprint compatible with all other UltraScale devices with the same sequence. See the migration table for details on inter-family migration.

4. Maximum achievable performance is device and package dependent; consult the associated data sheet for details.

5. For full part number details, see the Ordering Information section in DS890, UltraScale Architecture and Product Overview.

6. See UG575, UltraScale Architecture Packaging and Pinouts User Guide for more information.

7. GTH transceivers in A784, A676, and A900 packages support data rates up to 12.5Gb/s.

8. 0.8mm ball pitch. All other packages listed 1mm ball pitch.

Latency and Pipelining in hls4ml

layers are sequential

computations within layer are parallelizeable

everything is pipelined

new inputs after "initial interval"

Compression

Network	Substructure (uncompressed)	Substructure (compressed)		
AUC / Expected AUC	99.68%	99.55%		
Parameters	4389	1338		
Compression factor	_	3.3×		
DSP48E	3329	954		
Logic (LUT + FF)	263,234	88,797		
Latency	75 ns	75 ns		

Table 2: A summary of the vital statistics and HLS resource estimates of the uncompressed and compressed jet substructure tagging model with a network precision of fixed-point <16, 6> and fully pipelined with clock frequency of 200 MHz synthesized on a Xilinx Kintex Ultrascale FPGA.

Latency vs Compression

Figure 15: Comparison of the DSP usage for the one-hidden-layer implementation for the Xilinx Kintex Ultrascale FPGA as a function of the precision for various reuse factors.

Figure 16: Comprison of the FF performance (Left) and the LUT performance (Right) for the Kintex Ultrascale processor as a function of the precision for 1 and 4 reuse factors.