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Machine Learning in Jets
• Learning optimized nonlinear functions of many inputs for 

performing difficult tasks from (real or simulated) data


• Many successes in Jets: identification of b-quark jets, Higgs 
candidates, W/Z/top taggers …
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Jet, 
particles

Tag Info tagger

Reconstruction chain: Jet tagging

vertices

Data/MC
corrections

…

…

…

user

Task to find the particle ID of a jet, e.g. b-quark

Key features:
• Long lifetime of heavy 

flavour quarks
• Displaced tracks, …
• Usage of ML standard 

for this problem
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Typically applied offline,  
not online (in hardware trigger)



Data Processing at CMS
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CMS Trigger
High-Level 
TriggerL1 Trigger

1 kHz 
1 MB/evt

40 MHz

100 kHz

• Level-1 Trigger (hardware)


• 99.75% rejected


• decision in ~4 μs 

• High-Level Trigger (software)


• 99% rejected


• decision in ~100s ms

• After trigger, 99.99975% of events are gone forever

Offline

Level 1 Trigger (hardware, FPGAs based)
Decision in ~4 us

High Level Trigger (software, CPU based)
Decision in ~100 ms

L1 Trigger
High Level
Trigger

1 ns 1 us 1 s1 ms

Can we inference ML fast enough for trigger?



FPGAs and High Level Synthesis
• Field Programmable Gate Arrays

• Reprogrammable fabric of logic cells 
embedded with DSPs, BRAMs; high 
speed IO, etc. 
• logic cells (O(M)): circuit block for logic operation 
• Digital Signal Processors (DSPs) used for 

multiplication ~(O(K)) 
• BRAMs : on chip memory  

• Massively parallel 

• Low power consumption (relative to CPU/
GPU) 

• High Level Synthesis firmware
• C-style code that generates traditional 

RTL code for FPGAs  
• C code with additional directives 

• Faster development for physicists 

Machine learning algorithms are ubiquitous in HEP  

FPGA usage broad across HEP experiments 
Centered on DAQ and trigger development 

Some early adaptions of ML techniques in trigger [1] 

FPGA development becoming more accessible 

High Level Synthesis, OpenCL 

FPGA interest in industry is growing 
Programmable hardware with structures 
that maps nicely onto ML architectures  

MACHINE LEARNING & FPGAS 7

FPGA 
“programmable hardware” 

DSPs (multiply-accumulate, etc.) 
Flip Flops (registers/distributed memory) 

LUTs (logic) 
Block RAMs (memories)

[1] Carnes et al., https://indico.cern.ch/event/567550/contributions/2629686/  5

Motivation for High-Level Synthesis (HLS)
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Untimed C code

An 8-bit counter

+1    0

clk

rst

c 8

1

0
q

module dut(rst, clk, q); 
input rst; 
input clk; 
output q; 
reg [7:0] c; 

always @ (posedge clk) 
begin

if (rst == 1b’1) begin
c <= 8'b00000000; 

end
else begin

c <= c + 1; 
end

assign q = c;
endmodule

RTL Verilog

vs.

HLS

uint8 dut() { 
static uint8 c; 
c+=1; 

}
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input layer

output layer

M hidden layers

N1

NM

layer m

Nm

Figure 2: A cartoon of a deep, fully connected neural network illustrating the description conventions
used in the text

2.2 Case study: jet substructure

Jets are collimated showers of particles that result from the decay of quarks q and gluons g. At the LHC,
due to the high collision energy, another kind of jet emerges resulting from overlapping quark-initiated
showers produced in decays of heavy standard model particles. For example, the W and Z bosons
decay to two quarks (qq̄) a majority of the time and the Higgs boson decays to two b-quarks (bb̄). The
top quark decays to two light quarks and a b-quark (qq̄b). It is the task of jet substructure [9, 38] to
distinguish the various radiation profiles of these jets from backgrounds consisting mainly of quark
and gluon-initiated jets. The tools of jet substructure have been used to distinguish interesting jet
signatures from backgrounds that have production rates hundreds of times larger than the signal.

Jet substructure at the LHC has been a particularly active field for machine learning techniques as
jets contain O(100) particles whose properties and correlations may be exploited to identify physics
signals. The high dimensionality and highly correlated nature of the phase space makes this task
an interesting testbed for machine learning techniques. There are many studies that explore this
possibility, both in experiment and theory [9, 30–41]. For this reason, we choose to benchmark our
FPGA studies using the jet substructure task.

For the trigger specifically, jet substructure techniques could be used to identify and preserve events
containing interesting physics signatures that would typically be discarded. We give two examples in
Fig. 3: low mass hidden hadronic resonances [42] and boosted Higgs produced in gluon fusion [43].
Both processes are overwhelmed by backgrounds in the current trigger and the introduction of jet

– 6 –

NN Inference

1. latency, the total time (typically expressed in units of “clocks”) required for a single iteration
of the algorithm to complete.

2. initiation interval, the number of clock cycles required before the algorithm may accept a new
input. Initiation interval (often expressed as “II”) is inversely proportional to the inference rate,
or throughput; an initiation interval of 2 achieves half the throughput as an initiation interval
of 1. Consequently, data can be pipelined into the algorithm at the rate of the initiation interval.

3. resource usage, expressed as the following FPGA resource categories: onboard FPGA memory
(BRAM), digital signal processing (arithmetic) blocks (DSPs), and registers and programmable
logic (flip-flops, or FFs, and lookup tables, or LUTs).

The hls4ml tool has a number of configurable parameters which can help the user explore and
customize the space of latency, initiation interval, and resource usage tradeo�s for their application.
Because every application is di�erent, the goal of the hls4ml package is to empower the user to
perform this optimization through automated neural network translation and FPGA design iteration.
In practice, users find the time required to perform the hls4ml translation is much shorter (minutes
to hours) than a designing a specific neural network architecture for an FPGA, and may be used to
rapidly prototype machine learning algorithms without dedicated engineering support for the FPGA
implementation. For physicists, this makes designing physics algorithms for the trigger or DAQ
significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly reduced.

We first introduce some terminology and concepts for the inference of deep, fully connected
neural networks. Consider the network illustrated in Fig. 2 with M layers, where each layer m has Nm

neurons. The input layer has N1 input neurons and the output layer has NM output neurons. The vector
of neuron output values at each layer are denoted by xm. For the mth fully connected layer (m > 1),

xm = gm
�
Wm,m�1xm�1 + bm

�
, (2.1)

where Wm,m�1 is the matrix of weights between layers m � 1 and m, bm are the bias values, and gm is
the activation function for layer m. The size of matrix Wm,m�1 is Nm ⇥ Nm�1 and thus the number of
multiplications required to compute the neuron values of layer m is implicitly also Nm ⇥ Nm�1.

In hls4ml, the calculation of each layer xm is performed independently and sequentially. The
inference is pipelined and accepts a new set of inputs after its initiation interval, as described above.
The total number of multiplications required to infer a given neural network is:

Nmultiplications =

M’
m=1

Nm�1 ⇥ Nm. (2.2)

Non-trivial activation functions, such as sigmoid, softmax, and hyperbolic tangent, are precomputed
for a range of input values and stored in BRAMs. The ReLU activation function is implemented in
programmable logic. The e�ect of the neural network hyperparameters on the latency, throughput,
and resource usage informs the optimal network implementation for any given application.

– 5 –

activation multiplication addition
precomputed and 
stored in BRAMs DSPs logic cells

• NN inference = multiplication/addition and precomputed 
activation functions (look up table) 

• The flexibility of FPGA suits the need of NN inference 
• Leave the training of NN for GPU+CPU
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Case Study: Jet Tagging
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Jet Substructure Inputs

Observables

mmMDT

N�=1,2
2

M�=1,2
2

C�=0,1,2
1

C�=1,2
2

D�=1,2
2

D(↵,�)=(1,1),(1,2)
2Õ

z log z
Multiplicity

Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.

– 8 –

mass

ECFs

multiplicity

arXiv:1307.0007

arXiv:1305.0007

• Illustrative example, using high level-feature, not realistic for 
FPGA
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Table 1: A summary of the observables used in the analysis.

this study [51–54]. A brief description of each of these variables is presented in Ref. [55]. These are
used as expert-level inputs to a neural network classifier which is near optimal3.

Benchmark networks and floating point performance

We train a neural network for the classification task of q, g, W , Z , and t discrimination. The data are
randomly split into training (60%), validation (20%), and testing (20%) datasets. The input features
are standardized by removing the mean and scaling to unit variance. The architecture, illustrated in
Fig. 4 (left), is a fully-connected neural network with three hidden layers. The activation function
for the hidden layers is ReLU [56] while the output layer activation function is a softmax function to
provide probabilities for each class. The categorical cross-entropy loss function is minimized with
and without L1 regularization of the weights (Sec. 2.3) using the Adam algorithm [57] with an initial
learning rate of 10�4 and a minibatch size of 1024. The learning rate is halved if the validation loss
fails to improve over 10 epochs. Training is performed on an AWS EC2 P2 GPU instance [58] with
Keras [10]. We also consider a simpler architecture with one hidden layer, see Fig. 4 (right), when
studying the final FPGA implementation on a specific device. This is described further in Sec. 3.3.

The performance of the neural network classifier is shown in Fig. 5. The general features of this
performance plot are typical of jet substructure classification tasks. Top-quark jets, by virtue of their
large mass and three-prong nature, have the best separation from the rest of the jet types. The W and
Z jets are similar in performance because of their masses and two-prong nature while quark and gluon
jets are notoriously challenging to classify. Given this multi-jet classifier performance, we explore
how to implement such a neural network architecture in an FPGA using hls4ml.

3More sophisticated approaches exist, but the goal of this study is not to achieve better performance than existing
algorithms. Instead, the goal is to examine the implementation of several e�ective neural network architectures in FPGAs.
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mass

ECFs

multiplicity

arXiv:1307.0007

arXiv:1305.0007

• Excited to see development from this workshop 


• Looking for efficient and performant NN for substructure
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Case Study: Jet Substructure
• 5 output multi-classifier 


• Does a jet originate from a 
quark, gluon, W/Z boson, 
top quark?


• Fully connected network


• 16 expert inputs 


• jet mass, multiplicity, ECFs

CASE STUDY: JET SUBSTRUCTURE

5 output multi-classifier:  

Does a jet originate from a quark, gluon, W/Z boson, top quark? 

Network architecture 
16 expert inputs 

jet masses, multiplicity 

ECFs (β=0,1,2)

11

• 3-layer model trained 
without regularization


• No pruning applied


• Resulting distribution of 
weights 
 
 
 
 
 
 
 

3-layer model: no reg., no pruning

4

hls4ml preliminary

Fully connected deep 
neural network

16 inputs

64 nodes 
activation: ReLU

32 nodes 
activation: ReLU

32 nodes 
activation: ReLU

5 outputs 
activation: SoftMax 4,256 synapses

better
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Training for Compression

17

• Many possible schemes for compression


• Simple, iterative version:


• Train with L1 regularization  
(down-weights unimportant  
synapses)


• Remove X% of weights  
and retrain


• Rinse, repeat


• Our case study: 70% weight reduction with no 
performance loss

with L1 regularization

Compression
• FPGAs provide huge flexibility, but 

constrained by input bandwidth, limited 
resources on chip, latency requirement 

• Compression techniques remove 
redundancy in model 
• Train with L1 regularization 

•    

• Downweights unimportant synapses 

• Histograms on right: 
               |weight| / (max |weight|) 
• Remove / fix to zero lowest magnitude 

weights (per layer) 
• Removing synapses 

• After 7 iteration, 70% reduction with no 
loss in performance

 11

L�(w) = L(w) + �
X

i

|wi|

1st iteration 
pruning

Javier Duarte I hls4ml 12

(Energy) Efficient Neural Networks
• Compression


• Maintain the same performance while removing redundant synapses and 
neurons


• Quantization


• 32-bit floating point math is overkill


• 20-bit, 18-bit, 8-bit, …? fixed point, integers?  binarized NNs?

For further reading: https://arxiv.org/abs/1510.00149

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

Song Han, 

For further reading: arXiv:1510.00149

https://arxiv.org/abs/1510.00149


Figure 7: Distribution of the absolute value of the weights after compression.

network with a quantized precision in the training can lead to equivalent performance with significantly
smaller weight precision [81]. We leave investigations of these approaches for further work.

Parallelization

The trade-o� between latency, throughput and FPGA resource usage is determined by the paralleliza-
tion of the inference calculation. In hls4ml, this is configured with a multiplier “reuse factor” that
sets the number of times a multiplier is used in the computation of a layer’s neuron values. With a
reuse factor of one, the computation is fully parallel. With a reuse factor of R, 1/R of the computation
is done at a time with a factor of 1/R fewer multipliers. This is illustrated in Fig. 8.

FPGA multpliers are pipelined; therefore, the latency of one layer computation, Lm, is approxi-
mately

Lm = Lmult + (R � 1) ⇥ IImult + Lactiv , (2.4)

where Lmult is the latency of the multiplier, IImult is the initiation interval of the multiplier, and Lactiv
is the latency of the activation function computation. Equation 2.4 is approximate because, in some
cases, additional latency can be incurred for signal routing, for instance in the addition of multiplication
results contributing to a neuron value.

As discussed in Sec. 2.1, we implement each layer calculation independently and sequentially. The
calculation of one layer cannot be initiated until the calculation of the previous layer has completed.
Therefore, the total latency is equal to the sum of latencies of each layer plus the latency required to
connect the layers. The number of inferences completed per unit time is inversely proportional to the
reuse factor.

3 Performance and implementation

In this section, we quantify the results from the HLS translation and optimization of the jet substructure
neural network described in Sec. 2.2 as a function of the three basic principles described in the previous

– 13 –

integer bits = 2 + 1 for sign
(need more for neurons)

Quantization
• Fixed point data types 

• Faster and lower in FPGA-resource 
use than floating point 

• ap_fixed<width,integer> 

• Recipe for minimizing number of bits: 

• Choose number of integer bits to 
avoid underflows/overflows that lead 
to drastic performance loss 

• Choose number of fractional bits to 
reach desired performance
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0101.1011101010

width
fractionalinteger

ap_fixed<14,4>

Work in progress: 
Binary/Ternary Network
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mult

mult

mult

mult

mult

mult

mult

mult

mult

mult

use 1 multiplier 6 times
accepts new set of inputs every 6 clocks

use 3 multipliers 2 times each
accepts new set of inputs every 2 clocks

use 6 multipliers 1 time each
accepts new set of inputs every clock

Parallelization

6 multiplications

mm-1

• Configurable “reuse factor” = number of times a multiplier is used to do 
a computation

• Trade-off between latency and resource usage

More resource 
Less latency



2 Building neural networks with hls4ml

In this section we give an overview of the basic task of translating a given neural network model into
a firmware implementation using HLS. We then pick a specific use-case to study, though the study
will be discussed in a way that is meant to be applicable for a broad class of problems. We conclude
this section by discussing how to create an e�cient and optimal firmware implementation of a neural
network in terms of not only performance but also resource usage and latency.

2.1 hls4ml concept

Our basic task is to translate a trained neural network by taking a model architecture, weights, and
biases and implementing them in HLS in an automated fashion. This automated procedure is the task
of the software/firmware package, hls4ml. A schematic of a typical workflow is illustrated in Fig. 1.
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hls  4  ml

hls4ml

HLS  4  ML

Figure 1: A typical workflow to translate a model into a firmware implementation using hls4ml.

The part of the workflow that is illustrated in red indicates the usual software workflow required
to design a neural network for a specific task. This usual machine learning workflow, with tools such
as Keras and PyTorch, involves a training step and possible compression steps (more discussion
below in Sec. 2.3) before settling on a final model. The blue section of the workflow is the task of
hls4ml which translates a model into an HLS project that produces a firmware block. This automated
tool has a number of configurable parameters which can help the user customize the network translation
for their application.

The time to perform the hls4ml translation is much shorter (minutes to hours) than a custom
design of a neural network and can be used to rapidly prototype machine learning algorithms without
dedicated engineering support. For physicists, this makes designing physics algorithms for the trigger
or DAQ significantly more accessible and e�cient, thus allowing the "time to physics" to be greatly
reduced.

– 5 –
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high level synthesis for machine learning

https://arxiv.org/abs/1804.06913 
https://hls-fpga-machine-learning.github.io/hls4ml/

Compression, Quantization, and Parallelization made easy in

CPU+FPGA

https://arxiv.org/abs/1804.06913
https://hls-fpga-machine-learning.github.io/hls4ml/


Examine compression, quantization, and 
parallelization in jet substructure case study

• Firmware block from hls4ml ready in minutes along with 
preliminary FPGA resource usage estimates 

• Final “implementation” gives exact resource usage      
(discussed later) 

• Setup 
• Xilinx Vivado 2017.2 
• HLS target clock frequency: 200 MHz (5 clocks/BX) 
• Kintex Ultrascale, xcku115-flvb2104-2-i 

• 1.4M logic cells, 5,520 DSPs

 15

hls4ml case study
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Quantization & Compression
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3 Performance and implementation

The strategy for translating and optimizing deep neural networks using HLS is described in the
previous section. In this section, we quantify the results from that translation as a function of the 3
basic principles described above: compression, quantization, and parallelization. First we discuss the
classification performance of the neural network when implemented in firmware in Sec. 3.1. Then we
quantify, in Sec. 3.2, the firmware implmentation in terms of FPGA resource usage and latency. The
combination of these two metrics, classification and firmware performance, define how to optimally
implement neural networks into FPGA hardware for a given application.

3.1 Classification performance

In order to quantify the performance of our 5-output classifier, we use the traditional variable AUC
or “area under curve". This defines the area under the curve computed from sequential cuts in the
classifier output for the signal and background e�ciency as illustrated in Fig. 5. We denote the AUC
achieved by a full 32-bit floating point inference of the neural network as “Expected AUC". Next we
evaluate the neural network with fixed point precision denoted by <X,Y>where Y is the signed number
of integer bits and X is the number of total bits. We make two scans where we fix the number of integer
bits and when we fix the number of decimal bits. The results are illustrated in Fig. 9 where the left is
the scan on integer bits and on the right is the scan on decimal bits. The network being evaluated is
the fully connected 3-layer network described in Sec. 2.2.

Figure 8: Scan of the ratios of the fixed point AUC and expected AUC with floating point calculation
for the fully connected 3-layer network. Left plot is performed with various integer bits while the right
plot is scanning on decimal bits with 6 integer bit.

Optimal performance with no loss of classification power is when the “AUC/Expected AUC" is
at 1. It is shown that with su�cient number of bits in fixed point calculation, the AUCs of the neural
network inferenced with flaoting point can be reproduced. The optimal performance can be achieved
wiht much less than 32 floating point bits. This has been studied in [39].
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Scan fractional bits
Integer bits bits fixed to 6

Full performance reached 
at 8 fractional bits
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ap_fixed<width,integer> • DSPs (used for multiplication) 
will often be limiting resource 

• DSPs have a max size for input (e.g. 
25x18 bits), so number of DSPs per 
multiplication changes with 
precision

we show the di�erence between our compressed and uncompressed neural network models. In both
cases, we consider the network maximally parallelized (reuse factor of 1). With the weights stored in
programmable logic, sparse matrix multiplication is handled trivially and zero-weight multiplications
are optimized out of the network FGPA implementation. We find this to be a very attractive feature
of HLS though more sophisticated compression techniques like those described in [82] may require
more study.

Figure 11: A comparison between the compressed and uncompressed models, with a reuse factor of
1 for DSP usage (left) and latency in clock cycles for a 200 MHz clock frequency (right). The x-axis
is a scan in the fixed-point precision of the model and demonstrates how resource usage changes as a
function of the precision of the calculations in the network inference.

As shown in Fig. 11 (left), the DSP usage is drastically reduced for the compressed model
compared to the original network by an amount that is proportional to the 70% compression rate
described in Sec. 2.3. In addition, the DSP usage increases as the fixed-point precision increases. The
increases are not smoothly varying because they depend on the DSP design precisions. On the right
of Fig. 11, we present the latency of the algorithm in clock cycles for a 200 MHz clock frequency.
Because the network still has the same structure, in terms of the number of hidden layers, the latency
is approximately the same in the compressed and uncompressed models. Note that the total latency
to infer the model is approximately 15 clock cycles which translates to 75 ns, well within the latency
budgets of the first stages of LHC triggers.

To summarize the results of the HLS synthesis of the compressed and uncompressed models, we
report some vital statistics in Table 2. We note the reduced resources while maintaining the same
performance, latency, and initiation interval.

Compressed three-hidden-layer Model Results

We now consider our compressed three-hidden-layer neural network model as the benchmark model
for our use case and perform detailed scans of FPGA resources versus network precision and reuse
factor. In Fig. 12 and Fig. 13, we examine the DSP, FF, and LUT usage as a function of precision of the

– 17 –

compression

Fully parallelized  
(max DSP use)

Number of DSPs available

70% compression ~ 70% fewer DSPs



Reuse Factor
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Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.
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~ 175 ns 

~ 75 ns

mult

mult

• Trade off between resource and latency 
• NN inference within ~O(100)ns
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• Final implementation gives actual 
resource usage and timing 
estimate 

• Implement in a minimal design, 
simply routing all firmware block’s 
inputs and outputs to FPGA 
available pins 

• Power usage increases with 
precision, it goes down for less 
throughput (higher reuse factor)

Firmware implementation
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A�������: Recent results at the Large Hadron Collider (LHC) have pointed to enhanced physics
capabilities through the improvement of the real-time event processing techniques. Machine learning
methods are ubiquitous and have proven to be very powerful in LHC physics, and particle physics as a
whole. However, exploration of the use of such techniques in low-latency, low-power FPGA hardware
has only just begun. FPGA-based trigger and data acquisition (DAQ) systems have extremely low,
sub-microsecond latency requirements that are unique to particle physics. We present a case study for
neural network inference in FPGAs focusing on a classifier for jet substructure which would enable,
among many other physics scenarios, searches for new dark sector particles and novel measurements
of the Higgs boson. While we focus on a specific example, the lessons are far-reaching. We develop
a package based on High-Level Synthesis (HLS) called hls4ml to build machine learning models
in FPGAs. The use of HLS increases accessibility across a broad user community and allows for a
drastic decrease in firmware development time. We map out FPGA resource usage and latency versus
neural network hyperparameters to identify the problems in particle physics that would benefit from
performing neural network inference with FPGAs. For our example jet substructure model, we fit well
within the available resources of modern FPGAs with a latency on the scale of 100 ns.
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hls-fpga-machine-
learning.github.io/hls4ml

• Beta version is live! arXiv:1804.06913


• Work in progress:


• LHC/DUNE applications


• More network architectures:


• Boosted Decision Tree (testing)


• Binary Dense NN (testing)


• Conv1D, 2D (testing)


• BatchNormalization (prototyping)


• LSTM, GRU (prototyping)


• Graph-based NN (prototyping)

hls4ml New Developments

https://hls-fpga-machine-learning.github.io/hls4ml/
https://hls-fpga-machine-learning.github.io/hls4ml/
https://arxiv.org/abs/1804.06913
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More time means
➡ More resource reuse
➡ Bigger networks

1 ns 1 us 1 s1 ms

Pure FPGA Acceleration with FPGAs

“High Level” Trigger“L1” Trigger Offline

heterogenous computing
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Already at Cloud Scale

TOR

TOR TOR

TOR

L1 L1

Expensive 
compression

Deep neural 
networks

Web search 
ranking Bioinformatics

Web search 
ranking

L2

TOR

(a) (b)

Fig. 1. (a) Decoupled Programmable Hardware Plane, (b) Server + FPGA schematic.

tion hardware is tightly coupled with the datacenter network—
placing a layer of FPGAs between the servers’ NICs and
the Ethernet network switches. Figure 1b shows how the
accelerator fits into a host server. All network traffic is routed
through the FPGA, allowing it to accelerate high-bandwidth
network flows. An independent PCIe connection to the host
CPUs is also provided, allowing the FPGA to be used as a local
compute accelerator. The standard network switch and topol-
ogy removes the impact of failures on neighboring servers,
removes the need for non-standard cabling, and eliminates the
need to track the physical location of machines in each rack.

While placing FPGAs as a network-side “bump-in-the-wire”
solves many of the shortcomings of the torus topology, much
more is possible. By enabling the FPGAs to generate and
consume their own networking packets independent of the
hosts, each and every FPGA in the datacenter can reach
every other one (at a scale of hundreds of thousands) in
a small number of microseconds, without any intervening
software. This capability allows hosts to use remote FPGAs for
acceleration with low latency, improving the economics of the
accelerator deployment, as hosts running services that do not
use their local FPGAs can donate them to a global pool and
extract value which would otherwise be stranded. Moreover,
this design choice essentially turns the distributed FPGA
resources into an independent computer in the datacenter,
at the same scale as the servers, that physically shares the
network wires with software. Figure 1a shows a logical view
of this plane of computation.

This model offers significant flexibility. From the local
perspective, the FPGA is used as a compute or a network
accelerator. From the global perspective, the FPGAs can be
managed as a large-scale pool of resources, with acceleration

services mapped to remote FPGA resources. Ideally, servers
not using all of their local FPGA resources can donate
those resources to the global pool, while servers that need
additional resources can request the available resources on
remote servers. Failing nodes are removed from the pool
with replacements quickly added. As demand for a service
grows or shrinks, a global manager grows or shrinks the pools
correspondingly. Services are thus freed from having a fixed
ratio of CPU cores per FPGAs, and can instead allocate (or
purchase, in the case of IaaS) only the resources of each type
needed.

Space limitations prevent a complete description of the
management policies and mechanisms for the global resource
manager. Instead, this paper focuses first on the hardware
architecture necessary to treat remote FPGAs as available
resources for global acceleration pools. We describe the com-
munication protocols and mechanisms that allow nodes in
a remote acceleration service to connect, including a proto-
col called LTL (Lightweight Transport Layer) that supports
lightweight connections between pairs of FPGAs, with mostly
lossless transport and extremely low latency (small numbers
of microseconds). This protocol makes the datacenter-scale
remote FPGA resources appear closer than either a single local
SSD access or the time to get through the host’s networking
stack. Then, we describe an evaluation system of 5,760 servers
which we built and deployed as a precursor to hyperscale
production deployment. We measure the performance charac-
teristics of the system, using web search and network flow
encryption as examples. We show that significant gains in
efficiency are possible, and that this new architecture enables a
much broader and more robust architecture for the acceleration

Microsoft Catapult
Microsoft Brainwave

>100k FPGA 
network

• Brainwave provides a full services at scale, multi-FPGA/CPU fabric 
• Demonstrated large improvement in processing time for Bing searches 
• Caveat: only selected DNN models currently available (ResNet50)



• Services for Optimized Network Inference on Coprocessors 

• a framework to exploit cloud resources for on-demand inference 

• CPU runs “locally” and sends data to the cloud system, using FPGAs for 
inference
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SONIC in CMS

with ResNet50 on Microsoft Azure



Summary
• hls4ml, translates machine learning 

inference into firmware
• aims to be a flexible tool to 

implement NN with low latency
• paper: arxiv.1804.06913

• SONIC: exploring applications for 
acceleration with CPU-FPGA co-
processors
• Tested with Microsoft Azure
• Testing with Amazon AWS FPGA 

(F1) instance
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• While HEP NN is relative small compared to commercial NN, we should 
explore the most efficient way to get good jet substructure performance

DGCNN？

& economical

https://arxiv.org/abs/1804.06913


Backup
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Javier Duarte I hls4ml 21

Program Flow
python keras-to-hls.py -c keras-config.ymlTranslation

Inputs

Config

• IOType: parallelize or serialize


• ReuseFactor: how much to parallelize 


• DefaultPrecision: inputs, weights, biases

my-hls-test/:
build_prj.tcl  
firmware  
myproject_test.cpp

hls4ml program flow
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vivado_hls -f build_prj.tcl, produce a firmware block in ~m
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Reuse comes at a cost

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.

– 20 –

~ 175 ns 

~ 75 ns

Figure 13: Latency (left) and pipeline interval (right) in the pruned 3-layer model as a function of the
network precision. The various curves illustrate resource usage for di�erent resource usage factors.
The latency is given in clock cycles for a 200 MHz clock frequency.

3.3 Firmware Implementation

In this section, we compare the resource estimates from HLS synthesis with a firmware implementation
after final Vivado optimization. To get a rough scaling of the di�erences between the HLS synthesis
resource estimates and a final firmware implementation, we use a "bare" firmware design that allows for
the compilation of the ML algorithm with almost no additional resources. This “bare” implementation
consists of a simple VHDL wrapper that connects the available pins on the FPGA input/output directly
to the hls4mlfirmware block with the assumption that all inputs are delivered on the same clock edge
for evaluation. Including the VHDL wrapper, we perform the firmware implementation and compare
the resulting resource usage.

When performing the implementation, we noticed that the target latency benchmarks in HLS
could not be attained, and we had to reduce the clock speed so as to allow for the compiled algorithm
to meet the timing constraints. The amount needed to reduce of the clock speed became larger with
NN complexity; algorithms that took a large part of the FPGA required slower clocks. For the 3-layer
pruned NN at 32-bit precision, a clock of 8 ns was needed to implement an HLS block designed for
5 ns. This is observed for all reuse factors. A simple solution to overcome this issue is to synthesize
the HLS design for a slightly faster clock than intended. We also note that di�erent versions of Vivado
HLS have varying degrees of success meeting timing. We have had more success meeting timing with
Vivado 2�16.4 than 2�17.2.

Due to the limited number of pins, we now consider a di�erent neural network model with fewer
inputs. BK: subtle point to clarify how this IO limitation will a�ect everyone. In this case, we consider
a small 1 hidden layer model with 10 inputs and 1 output node. We also tested with the 3-layer
pruned network and we find similar quantitative conclusions in the regions where the number of pins
was su�cient for implementation. For the rest of this subsection, we present results with the 1-layer
network using an 8 ns clock at implementation.
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Number of clocks 
before accepting new 

inference inputs
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DSPs are estimated fairly well 
around DSP precision transition, 
Vivado does further optimizations

Firmware implementation

FFs are overestimated by a factor 
of 2-4 

LUTs are overestimated by a factor 
of ~2



Other Resources
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Figure 11: DSP usage in the pruned 3-layer model as a function of the network precision. The various
curves illustrate resource usage for di�erent resource usage factors.

Figure 12: FF and LUT usage in the pruned 3-layer model as a function of the network precision. The
various curves illustrate resource usage for di�erent resource usage factors.

corresponding to the four layers of neuron values that must be computed, with each increment in reuse
factor. This is in line with expectations from Eq. 2.4 where additional reuse of multipliers in a given
layer calculation incurs added latency. In the right plot of Fig. 13, the initiation interval is shown for
di�erent reuse factors. By design, the initiation interval and the reuse factor match as a new input can
be introduced to the algorithm only when all multiplications for a given DSP multiplier are completed.
At very low network precision, the HLS synthesis initiation interval is smaller than the reuse factor.
This is because multiplications are no longer implemented in DSPs but through FFs and LUTs.

– 19 –

• Fairly linear increase with precision 
• Small percentage of total available 

• But could matter depending on what else is on FPGA 
• Spikes present at steep transitions in DSP usage not observed in 

implementation
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Gokhale et al. arXiv:1708.02579 (2017)

TABLE VI: A comparison of throughput and efficiency across recent works in literature.
Eyeriss[26] Zhang[27] Caffeine[18] Qiu[19] HWCE[28] Snowflake

AlexNet VGG AlexNet VGG VGG AlexNet AlexNet GoogLeNet ResNet-50
Platform 65nm CMOS 65nm CMOS VX485T KU060 Zynq 7045 Zynq 7045 Zynq 7045 Zynq 7045 Zynq 7045
Clock (MHz) 200 200 100 200 150 100 250 250 250
Precision 16-bit fixed 16-bit fixed 32-bit float 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed
MAC Units 168 168 448 1058 780 800 256 256 256
Actual Perf. (G-ops/s) 46.1 24.5 61.6 310.0 187.8 140.8 120.3 116.2 122.3
Peak Perf. (G-ops/s) 67.2 67.2 89.6 423.2 234 160 128 128 128
Frame Rate (fps) 38.4 0.8 51.3 258.3 6.3 117.3 100.3 36.3 17.7
Power (W) 0.28 0.24 18.61 25 9.63 - 9.48 9.53 9.61
Energy Eff. (G-ops/J) 164.6 102.1 3.3 12.4 19.5 - 12.7 12.2 12.7
Computational Eff. 69% 36% 69% 73% 80% 88% 94% 91% 95%

floating point MAC unit requires 5 fixed point MAC units,
as listed in the paper. Thus, we divide the above number
by 5 to get 448 as the number of floating point MAC units
available in the design. We then use the above equation along
with a frequency of 100 MHz to get 89.6 G-ops/s as the peak
performance. The paper states measured performance as 61.6
G-ops/s which results in an efficiency of 69%.

Caffeine is an accelerator implemented in the newer Xil-
inx Ultrascale FPGA architecture using the KU060 device
[18]. The accelerator contains 1058 MAC units clocked at
200 MHz which results in a peak performance of 423.2 G-
ops/s. However, Caffeine provides peak performance of 365 G-
ops/s. For consistency, we have used the former value of
peak performance. Using the provided value of 310 G-ops/s as
measured performance for convolutional layers, we compute
a computational efficiency of 72%. If the value for peak
performance provided in the paper is considered, it results in
an efficiency of 84% which is still lower than the efficiency
achieved by Snowflake.

The accelerator by Qiu, et. al. [19] is an FPGA-based im-
plementation and is able to achieve 80% efficiency on VGG16.
The paper does not provide peak performance and this metric
was computed using the same formula as Eyeriss. Measured
performance is available and, like Eyeriss, is also split into
performance with DRAM access latency and performance
without DRAM access latency. Again, we consider the higher
number that does not include DRAM access latency. It should
be noted that Snowflake’s performance and efficiency do take
DRAM access latency into account. We consider this a fair
comparison because Snowflake is able to completely hide
DRAM latency behind the layer’s processing by efficient use
of traces and double buffering. Thus, our performance and
efficiency with and without DRAM latency are the same.

The hardware convolution engine (HWCE) presented in
[28] is implemented on the same Zynq device as Snow-
flake. The paper provides values for both peak and measured
performance. Based on these, we computed efficiency for the
HWCE as 88%.

Compared to these, Snowflake is able to achieve 94%
for AlexNet, 91% for GoogLeNet and 95% for ResNet-50.
Our lowest efficiency is still 3 percentage points above the
next best result (HWCE) and is measured on a significantly
more complex CNN model (AlexNet vs. GoogLeNet). Using
a model to model comparison, Snowflake’s efficiency is 6

percentage points higher than the HWCE.
It should also be noted that none of these designs run

GoogLeNet or any of the ResNet models as a benchmark.
In fact, to the best of our knowledge, no implemented CNN
accelerator has used GoogLeNet or ResNet-50 as a benchmark,
despite both being more recent models than AlexNet or VGG.
The Neurostream accelerator [29] provides numbers for newer
models including GoogLeNet and ResNet but is a simulated
design. They also require a significantly higher bandwidth
of 32 GB/s.. Finally, Neurostream’s efficiency is obtainable
when processing images in batch mode which is unsuitable
for workloads that require low latency such as autonomous
driving. Performance and efficiency when using a batch of 1
are not listed in the paper.

Snowflake is also able to achieve a higher clock frequency
than the other designs. To the best of our knowledge, no
FPGA-based implementation has achieved a clock frequency
of 250 MHz.

VII. FUTURE WORK AND CONCLUSION

This paper presented an efficiency and model agnostic CNN
accelerator architecture called Snowflake. We implemented
Snowflake on a Xilinx Zynq XC7Z045 device using 256 MAC
units at 250 MHz. Snowflake was able to achieve a throughput
of 100 frames per second and 120 G-ops/s on AlexNet and
36.4 frames per second and 116.4 G-ops/s on GoogLeNet.

The Zynq XC7Z045 device has 900 MAC units. Scaling
Snowflake up by using three compute clusters, we will be
able to utilize 768 MAC units. Assuming an accelerator
frequency of 250 MHz, Snowflake will be able to achieve a
peak performance of 384 G-ops/s. Snowflake can be scaled
further on larger FPGAs by increasing the number of clusters.
If batch processing is used, computational efficiency will
remain constant as the current system. Such a system can
be used for server-based workloads where latency is not as
important as throughput.
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Szegedy et al. (2015)

GoogLeNet

complexity of the model. For GoogLeNet’s inception modules,
the lowest efficiency was 86.7% for module 3a and the highest
efficiency was 95.3% for 3b and 5b. Inception 3a has 192 input
maps and four branches. Recall that inception modules first
reduce the input maps volume to multiple smaller volumes
using 1⇥ 1 convolutional kernels to create multiple branches.
The modules then use larger kernels on these branches. For
inception 3a, the 1 ⇥ 1 reduce happens on 192 input maps.
For such a layer, the trace length is 192 which is less than the
256 necessary to operate in COOP mode. 192 input maps are
not irregular and always result in aligned accesses. However,
one of the branches produces 16 output maps while another
produces 96. For INDP mode to operate at peak efficiency, a
multiple of 64 output maps are necessary. This results in the
former branch operating at 25% efficiency and the latter branch
operating at 75% efficiency. This accounts for the drop in
efficiency for inception 3a. GoogLeNet’s average efficiency of
91.5% translates to a throughput of 113.2 G-ops/s, a processing
latency of 27.75 ms and a frame rate equal to 36 frames per
second.

TABLE IV: Layer- and module-wise performance on the
GoogLeNet model.

Layer
#

Ops
(M-ops)

Theor.
Time (ms)

Actual
Time (ms)

Perf.
(G-ops/s)

Eff.
%

Layer 1 236 1.84 2.50 94.4 73.7%

Layer 2 756 5.49 5.64 134.0 97.3%

Inception 3a 256 2.25 2.59 98.9 86.9%
Inception 3b 609 4.98 5.22 116.6 95.4%

Inception 4a 147 1.28 1.45 101.5 88.3%
Inception 4b 176 1.49 1.69 104.0 88.2%
inception 4c 214 1.66 1.87 114.4 88.8%
inception 4d 237 1.92 2.03 116.8 94.6%
Ineption 4e 340 2.68 2.84 119.7 94.4%

Inception 5a 112 0.78 0.83 134.9 94.0%
Inception 5b 141 1.04 1.09 129.7 95.4%

Total 3224 25.41 27.75 116.2 91.6%

GoogLeNet has an average pool layer that follows Inception
module 5b. This layer converts the 1024 ⇥ 7 ⇥ 7 output
volume of Inception 5b into a 1024 ⇥ 1 ⇥ 1 vector. This
vector is then provided as an input to a 1024-to-1000 FC
layer. Average pooling can be viewed as a convolution with
a kernel whose weights are all equal to a value that is the
inverse of the average pooled area. For GoogLeNet’s average
pool layer, this value is 1÷49 = 0.02. The average pool layer
has low computational complexity - it requires only 98,000
operations to produce the output and a theoretical run time of
0.7 microseconds. As a result, it has a very high bandwidth
requirement which reduces its performance on Snowflake.
Average pool has a theoretical efficiency of 100% but is
reduced to 23.3% in our benchmark run due to this high
bandwidth requirement. However, due to its low computational
complexity, its low efficiency has a negligible effect on the
efficiency and performance of the entire network.

3) ResNet-50: ResNet’s 50 layer version has the highest
computation cost among the three benchmarks. The first layer
in this model is identical to GoogLeNet’s first layer. The

remaining layers are the bottleneck modules. The results of
module-wise runs on ResNet-50 are shown in table V. Each
conv x module in the table has a bottleneck module replicated
multiple times.

TABLE V: Layer- and bottleneck module-wise performance
on ResNet-50.

Layer
#

Ops
(M-ops)

Theor.
Time (ms)

Actual
Time (ms)

Perf.
(G-ops/s)

Eff.
%

conv 1 232 1.81 2.76 84.1 65.7%
conv 2 1165 9.10 9.37 124.4 97.2%
conv 3 1857 14.51 14.93 124.4 97.2%
conv 4 2388 18.66 20.55 116.2 97.0%
conv 5 1235 9.65 10.63 116.2 97.0%

Total 6879 53.72 56.25 122.3 95.5%

Each bottleneck module within a conv x module is identi-
cal. As a result, these were run only once. Additionally, conv 2
and conv 3 similar in terms of the hierarchy of the bottleneck
modules. Due to this, we benchmarked the more computation-
ally expensive conv 3 and the performance for conv 2 was
extrapolated from this run. Similarly, conv 4 and conv 5 are
hierarchically similar and conv 5 was benchmarked while the
performance for conv 4 is an extrapolation. As is the case
for the input layer of the first two benchmarks, ResNet’s first
layer is also irregular and has a lower efficiency. However,
the bottleneck modules are all highly regular and have a large
number of input maps, especially in conv 3 to conv 5. This
results in high throughput for these modules. As a result, the
efficiency of the entire network is 95.5%. Snowflake is able to
process ResNet-50 at a throughput of 17.7 frames per second.

C. Performance Comparison
We compare our performance to other recent works in

literature in table VI. Eyeriss is an ASIC implementation
[26] and has a grid of 14 ⇥ 12 MAC units. Eyeriss has a
computational efficiency of 69% and 36% for AlexNet and
VGG, respectively. While Eyeriss does run-length encoding
of the input and output maps, they decompress the input maps
volume before processing them in the grid. Computational
efficiency numbers are not directly available in [26]. However,
the paper does provide the means to compute both peak
and measured performance. Peak performance is computed as
2⇥numPEs⇥clock. The factor of 2 comes from counting one
multiply-accumulate as two operations. Measured performance
is computed by dividing operations for the model by the la-
tency. Eyeriss provides two metrics for latency. Total latency is
defined as the measured latency to process a layer. Processing
latency is defined as total latency less time taken to fetch maps
from DRAM and write outputs back to DRAM. As such, it is
a simulated metric. However, they claim to be able to optimize
this by better controlling DRAM traffic at negligible cost.
In the interest of fairness, we have considered the simulated
processing latency metric for performance numbers.

Zhang et.al. [27] use a 32-bit floating point accelerator.
While this paper lists the number of MAC units as 2280,
we do not directly use the same method as above because a
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Intel, commercially available today

CPU

8 GB

128 MB

8 lanes, 8 Gbps per lane

libraries becoming available



Conv1D + GRU + FC network topology
• 27 high-level (double-b) features + 100×10 PF candidate features  

+ 60×30 track features + 5×14 secondary vertex features per Higgs-candidate jet  
• Conv1D with kernel size 1 = Time-distributed dense = apply same dense network 

to each PF candidate / track / SV 
• GRU = Gated Recurrent Unit = Recurrent network to reduce dimensionality of 

output from Conv1D layers (100×32, 60×32, 5×32) → (50, 50, 50) 
 
 

SV 
features

Output  
 

Higgs 
QCD

7

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

PF cand. 
features

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

Conv1D 
(2 layers,  

32+32 units,  
dropout = 0.1)

track 
features

GRU  
(50 units,  

dropout = 0.1)

GRU  
(50 units,  

dropout = 0.1)

GRU  
(50 units,  

dropout = 0.1)

Double-b 
features

Fully 
connected 

 
(1 layer,  

100 units,  
dropout = 0.1)

(100, 32)

(60, 32)

(5, 32)

(50)

(50)

(100, 10)

(60, 30)

(5, 14)

(27)

(50)

(100)
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New Possibilities for LHC
• Hardware: 

• FPGA accelerators on-site for HLT 
• FPGA accelerators in offline computing 

resources 
• Cloud: Microsoft, Amazon, etc. 

• New possibilities: 
1. Much larger networks possible
2. Migrate upstream

• E.g. offline to HLT
3. Recast bottlenecks into ML problems

• E.g. tracking, imagine algorithms in talks 
by Jean-Roch Vlimant and Steven Farrell 
done in FPGAs

2.9k inputs, 60k parameters

E.g. offline H(bb) tagger

Graph formulation

• What if we structure our data as a graph of connected hits? 

• Connect plausibly-related hits using geometric constraints or a pre-
processing algorithm (e.g. Hough) 

• What kinds of models can we apply to this representation? 

• Traditional architectures clearly don’t work 
• but there’s a growing sub-field of ML called Geometric Deep Learning

13

E.g. graph NN for tracking

HEP.TrkX, https://indico.cern.ch/event/658267/contributions/2881175/
attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf 

D. Burger

https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
https://indico.cern.ch/event/658267/contributions/2881175/attachments/1621912/2581064/Farrell_heptrkx_ctd2018.pdf
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ASICsFPGAs

Source: Bob Broderson, Berkeley Wireless group (via Andrew Putnam)
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Kintex® UltraScale™ FPGAs
Device Name KU025(1) KU035 KU040 KU060 KU085 KU095 KU115

Logic Resources

System Logic Cells (K) 318 444 530 726 1,088 1,176 1,451

CLB Flip-Flops 290,880 406,256 484,800 663,360 995,040 1,075,200 1,326,720 

CLB LUTs 145,440 203,128 242,400 331,680 497,520 537,600 663,360

Memory Resources

Maximum Distributed RAM (Kb) 4,230 5,908 7,050 9,180 13,770 4,800 18,360 

Block RAM/FIFO w/ECC (36Kb each) 360 540 600 1,080 1,620 1,680 2,160

Block RAM/FIFO (18Kb each) 720 1,080 1,200 2,160 3,240 3,360 4,320 

Total Block RAM (Mb) 12.7 19.0 21.1 38.0 56.9 59.1 75.9

Clock Resources
CMT (1 MMCM, 2 PLLs) 6 10 10 12 22 16 24 

I/O DLL 24 40 40 48 56 64 64

I/O Resources

Maximum Single-Ended HP I/Os 208 416 416 520 572 650 676 

Maximum Differential HP I/O Pairs 96 192 192 240 264 288 312

Maximum Single-Ended HR I/Os 104 104 104 104 104 52 156 

Maximum Differential HR I/O Pairs 48 48 48 48 56 24 72

Integrated IP 

Resources

DSP Slices 1,152 1,700 1,920 2,760 4,100 768 5,520 

System Monitor 1 1 1 1 2 1 2

PCIe® Gen1/2/3 1 2 3 3 4 4 6 

Interlaken 0 0 0 0 0 2 0 

100G Ethernet 0 0 0 0 0 2 0 

16.3Gb/s Transceivers (GTH/GTY) 12 16 20 32 56 64(2) 64

Speed Grades

Commercial -1 -1 -1 -1 -1 -1 -1

Extended -2 -2 -3 -2 -3 -2 -3 -2 -3 -2 -2 -3

Industrial -1 -2 -1 -1L -2 -1 -1L -2 -1 -1L -2 -1 -1L -2 -1 -2 -1 -1L -2

Package

Footprint(3, 4, 5, 6)
Package Dimensions 

(mm)
HR I/O, HP I/O, GTH/GTY

A784(7) 23x23(8) 104, 364, 8 104, 364, 8

A676(7) 27x27 104, 208, 16 104, 208, 16

A900(7) 31x31 104, 364, 16 104, 364, 16

A1156 35x35 104, 208, 12 104, 416, 16 104, 416, 20 104, 416, 28 52, 468, 28

A1517 40x40 104, 520, 32 104, 520, 48 104, 520, 48

Footprint 

Compatible with 

Virtex® UltraScale 

Devices

C1517 40x40 52, 468, 40

D1517 40x40 104, 234, 64

B1760 42.5x42.5 104, 572, 44 52, 650, 48 104, 598, 52

A2104 47.5x47.5 156, 676, 52

B2104 47.5x47.5 52, 650, 64 104, 598, 64

D1924 45x45 156, 676, 52

F1924 45x45 104, 520, 56 104, 624, 64
Notes: 
1. Certain advanced configuration features are not supported in the KU025. Refer to the Configuring FPGAs section in DS890, UltraScale Architecture and Product Overview.
2. GTY transceivers in KU095 devices support data rates up to 16.3Gb/s.
3. Packages with the same package footprint designator, e.g., A2104, are footprint compatible with all other UltraScale devices with the same sequence. See the migration table for details on inter-family migration.
4. Maximum achievable performance is device and package dependent; consult the associated data sheet for details.
5. For full part number details, see the Ordering Information section in DS890, UltraScale Architecture and Product Overview.
6. See UG575, UltraScale Architecture Packaging and Pinouts User Guide for more information.
7. GTH transceivers in A784, A676, and A900 packages support data rates up to 12.5Gb/s.
8. 0.8mm ball pitch. All other packages listed 1mm ball pitch.
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everything is pipelined

compute1
activation 1

compute2
activation2

compute3
activation3

compute4
activation4 

layers are sequential

computations within layer 
are parallelizeable 

new inputs after “initial interval”
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Network Substructure (uncompressed) Substructure (compressed)
AUC / Expected AUC 99.68% 99.55%

Parameters 4389 1338
Compression factor - 3.3⇥

DSP48E 3329 954
Logic (LUT + FF) 263,234 88,797

Latency 75 ns 75 ns

Table 2: A summary of the vital statistics and HLS resource estimates of the uncompressed and
compressed jet substructure tagging model with a network precision of fixed-point <16,6> and fully
pipelined with clock frequency of 200 MHz synthesized on a Xilinx Kintex Ultrascale FPGA.

fixed point calculations, <X,6>. From the findings in Sec. 3.1, we scan the number of fractional bits
by scanning X while fixing the integer bits at Y = 6, guaranteeing no underflows/overflows. Di�erent
curves are shown for di�erent values of reuse factor.

Figure 12: DSP usage in the compressed three-hidden-layer model as a function of the network
precision. The various curves illustrate resource usage for di�erent resource usage factors.

In Fig. 12, we observe that the reuse factor controls the number of times a multiplier is used in
the neural network. As the reuse factor increases, we are able to control the DSP usage proportionally
to the reuse factor. The DSP usage (reuse = 3) scales as the DSP usage (reuse = 1) divided by 3.
The DSP resource usage has jumps as a function of the network precision, and this is consistent for
all values of reuse. In the figure, we also indicate the maximum number of DSPs available in this
particular Xilinx Kintex Ultrascale FPGA. In Fig. 13, the LUT (left) and FF (right) usage is shown.
For both the LUTs and the FFs, the resource usage relative to the FGPA’s capacity is small compared to

– 18 –
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we show the di�erence between our compressed and uncompressed neural network models. In both
cases, we consider the network maximally parallelized (reuse factor of 1). With the weights stored in
programmable logic, sparse matrix multiplication is handled trivially and zero-weight multiplications
are optimized out of the network FGPA implementation. We find this to be a very attractive feature
of HLS though more sophisticated compression techniques like those described in [82] may require
more study.

Figure 11: A comparison between the compressed and uncompressed models, with a reuse factor of
1 for DSP usage (left) and latency in clock cycles for a 200 MHz clock frequency (right). The x-axis
is a scan in the fixed-point precision of the model and demonstrates how resource usage changes as a
function of the precision of the calculations in the network inference.

As shown in Fig. 11 (left), the DSP usage is drastically reduced for the compressed model
compared to the original network by an amount that is proportional to the 70% compression rate
described in Sec. 2.3. In addition, the DSP usage increases as the fixed-point precision increases. The
increases are not smoothly varying because they depend on the DSP design precisions. On the right
of Fig. 11, we present the latency of the algorithm in clock cycles for a 200 MHz clock frequency.
Because the network still has the same structure, in terms of the number of hidden layers, the latency
is approximately the same in the compressed and uncompressed models. Note that the total latency
to infer the model is approximately 15 clock cycles which translates to 75 ns, well within the latency
budgets of the first stages of LHC triggers.

To summarize the results of the HLS synthesis of the compressed and uncompressed models, we
report some vital statistics in Table 2. We note the reduced resources while maintaining the same
performance, latency, and initiation interval.

Compressed three-hidden-layer Model Results

We now consider our compressed three-hidden-layer neural network model as the benchmark model
for our use case and perform detailed scans of FPGA resources versus network precision and reuse
factor. In Fig. 12 and Fig. 13, we examine the DSP, FF, and LUT usage as a function of precision of the

– 17 –
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Figure 15: Comparsion of the DSP usage for the one-hidden-layer implemenation for the Xilinx
Kintex Ultrascale FPGA as a function of the precision for various reuse factors.

Figure 16: Comprsion of the FF performance (Left) and the LUT performance (Right) for the Kintex
Ultrascale processor as a function of the precision for 1 and 4 reuse factors.

The power usage is shown in Fig. 17. For all implementations, a clear trend towards more power
usage for larger network precision is present. It is also very interesting to see that as the throughput is
decreased by increasing the reuse factor, power usage also godes down.

4 Summary and Outlook

We have demonstrated hls4ml, a deep neural network framework, capable of porting fully connected
networks trained from conventional training frameworks such as Keras, TensorFlow, and PyTorch
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