Searching for new physics with autoencoders

ML4Jets November 16, 2018 Marco Farina Stony Brook University

Based on Farina, Nakai, Shih '18

Thanks Gregor!

Does it work?

- Train on QCD only
- Test on top vs QCD
- Cut on loss function as discriminator
 - Large loss \rightarrow autoencoding failure \rightarrow anomaly

Autoencoders

 λ bottleneck latent dim

$$\ell(\theta, \phi) = |x - g_{\phi}(f_{\theta}(x))|^2$$

Autoencoders

 λ bottleneck latent dim

PCA

Principal component analysis: linear transformation Lower dimensional representation of data q < n

$$\ell(V_q) = |x - V_q^T V_q x|^2$$

Find best V_q

Data

We generated:

- QCD jets as train/ background
- tops and 400 GeV gluinos (with 3j RPV decay) as signal/anomaly

Transformed sample in images

Preprocessing as in Macaluso, Shih '18

	CMS
Jet sample	$13 { m TeV}$
	$p_T \in (800, 900) \text{ GeV}, \eta < 1$
	Pythia 8 and Delphes
	particle-flow
	match: $\Delta R(t, j) < 0.6$
	merge: $\Delta R(t,q) < 0.6$
	1.2M + 1.2M
Image	37×37
	$\Delta \eta = \Delta \phi = 3.2$

Data

After training on QCD jets...

Tag anomaly using cut on reconstruction error

 $\epsilon_{\rm S}$

Encoding dim

Expressivity vs Triviality

Encoding dim

Expressivity vs Triviality

Train set contamination

Cheating so far: weakly supervised vs unsupervised

Robustness?

Different generators, as a proxy for training on simulation vs real data

Very qualitative...

Build test statistic given expected number of events passing the cut or...

Enhanced bump hunt?

Use AE to reduce background in conventional searches

Crucial to avoid distortions of the spectrum

Enhanced bump hunt?

Mass distribution stable against reconstruction error cuts

Enhanced bump hunt?

Use AE to deplete data from bkg events. Followed by bump hunt? Other techniques?

Training

VS

Supervised

Unsupervised

Optimized decision boundary

Optimized modeling of input data

Inference

VS

Supervised

Unsupervised

Optimized decision boundary

Optimized modeling of input data

Inference

VS

Supervised

Unsupervised

Optimized decision boundary

Optimized modeling of input data

VS

CWoLa hunting

Autoencoders

CWoLa hunting

Which one is better? When? Can they be combined?

Other jet representations?

- 4-vectors matrix (see Gregor's talk)
- sequence (RNN/seq2seq)

Other jet representations?

Huilin's talk

- 4-vectors matrix (see Gregor's talk)
- sequence (RNN/seq2seq)
- binary tree (?)
- point cloud

•

. . .

Is it really useful/relevant?

Choice of loss?

What's a good "distance" between two jets? E.g.

Kominske, Metodiev, Nachman, Schwartz '17

$$\tilde{k}_{j} = \begin{pmatrix} \tilde{k}_{0,j} \\ \tilde{k}_{1,j} \\ \tilde{k}_{2,j} \\ \tilde{k}_{3,j} \end{pmatrix} \xrightarrow{\text{LoLa}} \begin{pmatrix} \tilde{k}_{0,j} \\ \tilde{k}_{1,j} \\ \tilde{k}_{2,j} \\ \tilde{k}_{3,j} \\ \sqrt{\tilde{k}_{j}^{2}} \end{pmatrix}$$

2)

$$L_{\text{auto}} = \sum_{j=1}^{40} \sum_{i=0}^{3} \left(\tilde{k}_{i,j}^{\text{in}} - \tilde{k}_{i,j}^{\text{auto}} \right)^2$$

Jet (binary) classification

Muffin or chihuahua?

 $p(\log|x) = f(x)$

Jet anomaly detection

Given data from p(x). Can I tell if \hat{x} comes from the same distribution?

Train set

$p(\text{muffin}|\hat{x}) > \epsilon$

Jet anomaly detection

Given data from p(x). Can I tell if \hat{x} comes from the same distribution?

Train set

$p(\text{muffin}|\hat{x}) > \epsilon$

Anomaly detection

Given data from p(x). Can I tell if \hat{x} comes from the same distribution?

Train set

$p(\text{muffin}|\hat{x}) > \epsilon$

For now we have abandoned all probabilistic interpretation and discarded latent space information

For now we have abandoned all probabilistic interpretation and discarded latent space information

Conclusion

Autoencoders can be powerful tools for anomaly searches in jet physics

First baby steps in unsupervised territory

Model distribution in some way, e.g. as a mixture (of gaussians). Maximum likelihood parameter estimation.

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

Model distribution in some way, e.g. as a mixture (of gaussians). Maximum likelihood parameter estimation.

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

 $p(\hat{x}) > \epsilon$

Model distribution in some way, e.g. as a mixture (of gaussians). Maximum likelihood parameter estimation.

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

 $p(\hat{x}) > \epsilon$

Model distribution in some way, e.g. as a mixture (of gaussians). Maximum likelihood parameter estimation.

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k).$$

Not feasible for large dimensionality data

DNN

CNN

Ke, Lin, Huang '17

Gluino ROC

 $\epsilon_{\rm S}$