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INTRODUCTION

How to represent a jet is one of the key aspects of machine learning
algorithms for jet physics

better representation can improve the performance/efficiency of the ML
algorithms, therefore extend the reach of physics analyses

new representations (and ML algorithms) may lead to fresh insights into jets
themselves, thus deepen our understanding of jet physics

Lots of the approaches and techniques has been proposed in the past few
years...
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AS SEQUENCES...
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AS... POINT CLOUDS!?

arXiv:1801.07829
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AS... POINT CLOUDS!?

Point cloud

From Wikipedia, the free encyclopedia

A point cloud is a set of data points in space.
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AS... POINT CLOUDS!?

Point cloud

From Wikipedia, the free encyclopedia

A point cloud is a set of data points in space.
Point clouds are generally produced by 3D
scanners, which measure a large number of points
on the external surfaces of objects around them.



JET AS A PARTICLE CLOUD

simulated top quark jet

anti-kt, R = 0.8, pr = 600 GeV
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Jet (Particle cloud)

From Wikipedia, the free encyclopedia

A jet (particle cloud) is a set of particles in space.
Particle clouds are generally created by clustering
a large number of particles measured by particle

CNIS,/ |
detectors, e.g.,@;\;[hﬁé and 3/

[ A



POINT CLOUDS VS PARTICLE CLOUDS

Point cloud Particle cloud
points are intrinsically unordered particles are intrinsically unordered
primary information: primary information:
3D coordinates in the xyz space 2D coordinates in the n-¢ space

but also additional “features”:
energy/momenta
charge/particle type

track quality/impact parameters/etc.
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WHY PARTICLE CLOUD?

Image

can benefit directly from powerful and sophisticated algorithms (CNNs) from the
computer vision community

Images are uniform grids of pixels:

projecting particles into pixels leads to high sparsity and loss of granularity

also nontrivial to include features other than particle energy/momenta (e.g., track
Impact parameters)

Sequence
preserves full granularity, no loss of information from pixelation
straightforward to include any features for each particle
all sequence-based algorithm (RNN/RecNN/1D CNN) assumes an explicit ordering

but jet constituents are intrinsically unordered
Point cloud

shares all the benefits of sequence

and points are unordered
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LEARNING FROM POINT CLOUDS

Efficient representation already half of success
but only half...

the other half: a powerful network that fully exploits all the information in the
representation

Learning from point clouds

active research area in the ML community mainly due to the prosperity of autonomous
driving technology

many custom algorithms proposed recently

One of the key aspects is to respect/exploit the permutation invariance of the
Inputs

one approach: use a ‘global” symmetric function over inputs (e.g., Deep Sets)

adapted to particle clouds -> Energy Flow Network §&s [#erialeesielhe)

another approach: hierarchical learning from “local” to "global”
an example: convolution operation
key contributor to the overwhelming success of CNNs in image recognition

can we adapt convolution to work on point clouds?


https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1810.05165
https://indico.cern.ch/event/745718/timetable/?view=standard#20-energy-flow-networks-deep-s

CONVOLUTION ON REGULAR GRIDS
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CONVOLUTION ON POINT CLOUDS
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Convolution on point clouds: EdgeConv [arxiv:1801.07829]

treating a point cloud as a graph:
each point is a vertex

for each point, a local patch is defined by getting the K-nearest neighbors to it
distance defined based on the point “coordinates”

designing a symmetric ‘convolution” function
define “edge feature” for each center-neighbor pair: ej; = he(xi, X;)

same ho for all neighbor points, and all center points, for symmetry

aggregate the edge features in a symmetric way: xi = 2 ej;
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DYNAMIC GRAPH CNN

EdgeConv shares many nice properties of regular CNNs

incorporates local neighborhood information (correlations)

can be stacked to perform a hierarchical learning from local to global features
Dynamic Graph CNN (DGCNN)

when stacking the EdgeConv layers, it is possible to recompute the graph using nearest
neighbors in the features space produces by each layer

i.e.,the output features of each EdgeConv layer can be treated as a new “coordinate” for each
point

point distances can be updated using these learned coordinates (in a latent space)

found to be beneficial in the ML paper
Customization for particle clouds

the original DGCNN is actually not directly applicable to jets, as the particle inputs have not
only “coordinates” (i.e., n, @), but also additional features (pr, charge, particle 1D, etc.)

to apply DGCNN on particle clouds, some customizations are made to the first EdgeConv layer:
the nearest neighbor finding is purely based on the (n, ®) coordinates

then, the other features are added to the (n, ) coordinates of each particle for producing the
edge features
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NETWORK ARCHITECTURE

Implemented with @Xnet
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3 stages: k-nearest neighbors updated at the beginning of each stage

batch normalization (BN) used after each EdgeConv operation

residual connection (RC) [1512.03385,1603.05027] added between EdgeConv layers

Output

BN and RC helped greatly for stabilizing the training and also improving the performance
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PERFORMANCE COMPARISON

The performance of DGCNN is benchmarked on two jet tagging tasks using public
datasets:
top tagging dataset: A. Butter, G. Kasieczka, T. Plehn and M. Russell [arXiv:1707.08966, Link]

quark/gluon tagging dataset: P. T. Komiske, E. M. Metodiev and J. Thaler [arXiv:1810.05165, Link]

very nice public datasets
ML-friendly format, convenient for developing/testing new algorithms
allow for consistent comparison between algorithms
the community needs more public datasets
especially ones closer to real experiments (pileup, tracking, detector resolution, etc.)
open data/simulation in ML-friendly format from CMS and ATLAS would be of great help!
Results compared with a few alternative algorithms

1D CNN over particle sequence (P-CNN)
CMS “DeepAK8” architecture [CMS-DP-2017-049]

but using only information available in the datasets (e.g., no tracking)
2D CNN over 64x64 jet image

state-of-the-art model from image recognition: ResNeXt50 [arXiv:1611.05431]

#filters reduced by a factor or 4 to avoid overfitting and also to speed up training

Particle Flow Network (PFN) [arXiv:1810.05165]


https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
https://energyflow.network/
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PERFORMANCE: TOP T AGGING

Top tagging:
only particle 4-momentum is available a § —— 1D P-CNN (area = 0.9804)
] —— ResNeXt50 (area = 0.9838)
train/val/test 1.2M/400k/400k | —— DGCNN (area = 0.9842)
results of more algorithms available at link 1071
We managed to push the boundary a bit further g
>20% lower background at signal efficiency of 30% E 102 |
Is the gain real? Or is it just learning more details of the g'z
parton shower model? ® \
1073 4 \
but personally | would not really consider the jet tagging ] ’
problem as solved better
especially facing realistic experimental challenges like 107 & — — — — 4
pileup, detector effects, and additional information (e.g., | | Signal efficiency | |

tracking, timing, etc.)

Performance on top-tagging dataset

Algorithm Accuracy ROC AUC | /€bkg @ Esig=30%
_________________________ IDP-CNN 090 09804 o 780
____________ 2D CNN [ResNeXts0] 093 0988 1086

DGCNN 0.937 0.9842 1160
""""" PFN-rr. larXiv:181005165]  0.932  0.9819+0.00017 888+17



https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
https://arxiv.org/abs/1810.05165

PERFORMANCE: QUARK/GLUON TAGGING
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and J. Thaler [arXiv:1810.05165, Link]
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Performance on quark/gluon-tagging dataset

PFN [arXiv:1810.05165] - 0.8971 + 0.0008 30.8 +0.4
MOT;T;“m """"" 2D CNN [ResNext50]  0.821 0.8960 309
DGCNN 0.826 0.8988 32.8
Momentum . PFN-EX larXiv:1810.05165] o 0.9005 +0.0003 ~ 34.7+0.4
+ realistic 1D P-CNN 0.826 08%6 349
particle ID DGCNN 083 09073 36.8


https://energyflow.network/
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1810.05165
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TRAINING AND INFERENCE SPEED

Another important factor of a ML algorithm is the training and
Inference speed

benchmarked on a GTX 1080Ti

current ML package not well optimized for graph network

future implementation/hardware(e.g., FPGA) may greatly improve the speed

B Training (ms/event) " Inference (ms/event)

1.2
0.9
0.6

0.3

P-CNN ResNeXt50 DGCNN
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OUTLOOK

We present another point cloud inspired approach for jet tagging

a jet can be viewed as a cloud of unordered particles

dynamic graph CNN, based on permutation-invariant EdgeConv operation, is
applied on particle clouds for jet tagging

better performance for jet tagging compared to existing approaches based on
jet images and sequences

Point cloud: a natural and flexible representation for jets as well as
collision events, with a rich connection yet to be fully explored

point cloud classification (labelling the whole cloud) <-> jet tagging
point cloud segmentation (labelling each point)

pileup identification?

particle tracking?
so far we are importing expertise from ML community

can we propose better ML algorithms based on physics?

can we export better ideas to the ML community?
20



OUTLOOK (CONT.)

Point cloud: a natural and flexible representation for jets as well as
collision events, with a rich connection yet to be fully explored

can we peek in the ML model to see what/how it learned?

can we learn jet physics from ML?
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TOP TAGGING COMPARISON

Approach AUC |Acc. |1/eB Contact Comments
(@
eS=0.3)
LoLa 0.979 | 0.928 GK/ Preliminary number, based on
Simon LoLa
Leiss
LBN 0.981 | 0.931 | 863 Marcel Preliminary
Rieger number
CNN 0.981 | 0.93 |780 David Shih | Model from Pulling Out All the
Tops with Computer Vision and
Deep Learning (1803.00107)
P-CNN 0.980 | 0.930 | 782 Huilin Qu, | Preliminary, use kinematic info
(1D CNN) Loukas only
Gouskos | (https://indico.physics.lbl.gov/i
ndico/event/546/contributions/1
270/)
6-body 0.979 | 0.922 | 856 Karl Based on 1807.04769 (Reports
N-subjettiness Nordstrom | of My Demise Are Greatly
(+mass and pT) Exaggerated: N-subjettiness
NN Taggers Take On Jet Images)
8-body 0.980 |0.928 | 795 Karl Based on 1807.04769 (Reports
N-subjettiness Nordstrom | of My Demise Are Greatly
(+mass and pT) Exaggerated: N-subjettiness
NN Taggers Take On Jet Images)
Linear EFPs 0.980 |0.932 |380 Patrick d<= 7, chi <= 3 EFPs with FLD.
Komiske, Based on 1712.07124: Energy
Eric Flow Polynomials: A complete
Metodiev linear basis for jet substructure.
Particle Flow 0.982 |(0.932 | 888 Patrick Median over ten trainings. Based
Network (PFN) Komiske, on Table 5 in 1810.05165: Energy
Eric Flow Networks: Deep Sets for
Metodiev Particle Jets.
Energy Flow 0.979 |0.927 | 619 Patrick Median over ten trainings. Based
Network (EFN) Komiske, on Table 5 in 1810.05165: Energy
Eric Flow Networks: Deep Sets for
Metodiev Particle Jets.
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