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INTRODUCTION
How to represent a jet is one of the key aspects of machine learning 
algorithms for jet physics 

better representation can improve the performance/efficiency of the ML 
algorithms, therefore extend the reach of physics analyses 

new representations (and ML algorithms) may lead to fresh insights into jets 
themselves, thus deepen our understanding of jet physics 

Lots of the approaches and techniques has been proposed in the past few 
years…
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AS IMAGES…
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Figure 1: The stable particles (top left), track (top right), topocluster (bottom left), and tower (bottom right) images
for an example gluon jet image. The tower image has gaps between hit pixels because the 0.1 ⇥ 0.1 towers are
projected onto a 0.05 ⇥ 0.05 jet image.
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AS SEQUENCES…
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S1 S2 Sn. . .

I1 I2 In. . .
Input

Sequence

LSTM

States

MLP

Output

1607.08633

tj , and let the left and right children of node k be denoted by kL and kR respectively. Let

also kL always be the hardest child of k. By construction, we suppose that leaves k map

to particles i(k) while internal nodes correspond to recombinations. Using these notations,

we recursively define the embedding h
jet
k

2 Rq of node k in tj as

v1 v2 ... vNj

hjet
1 (tj)

hjet
k

hjet
kL

hjet
kR

...

f jet(tj)

C
la
ss
ifi
er

J
et

em
be
dd

in
g

Figure 1. QCD-motivated recursive jet
embedding for classification. For each
individual jet, the embedding h

jet
1 (tj) is

computed recursively from the root node
down to the outer nodes of the binary tree
tj . The resulting embedding is chained
to a subsequent classifier, as illustrated in
the top part of the figure. The topology of
the network in the bottom part is distinct
for each jet and is determined by a sequen-
tial recombination jet algorithm (e.g., kt
clustering).

h
jet
k

=

8
>>>>><

>>>>>:

uk if k is a leaf

�

0

BB@Wh

2

664

h
jet
kL

h
jet
kR

uk

3

775+ bh

1

CCA otherwise

(3.1)

uk = � (Wug(ok) + bu) (3.2)

ok =

(
vi(k) if k is a leaf

okL + okR otherwise
(3.3)

where Wh 2 Rq⇥3q, bh 2 Rq, Wu 2 Rq⇥4 and

bu 2 Rq form together the shared parameters to

be learned, q is the size of the embedding, � is the

ReLU activation function [18], and g is a function

extracting the kinematic features p, ⌘, ✓, �, E, and

pT from the 4-momentum ok.

When applying Eqn. 3.1 recursively from the

root node k = 1 down to the outer nodes of

the binary tree tj , the resulting embedding, de-

noted h
jet
1 (tj), e↵ectively summarizes the informa-

tion contained in the particles forming the jet into

a single vector. In particular, this recursive neural

network (RNN) embeds a binary tree of varying

shape and size into a vector of fixed size. As a

result, the embedding h
jet
1 (tj) can now be chained

to a subsequent classifier or regressor to solve our

target supervised learning problem, as illustrated

in Figure 1. All parameters (i.e., of the recursive

jet embedding and of the classifier) are learned

jointly using backpropagation through structure

[9] to minimize the loss Ljet, hence tailoring the

embedding to the specific requirements of the task.

Further implementation details, including an ef-

ficient batched computation over distinct binary

trees, can be found in Appendix C.

– 4 –

1702.00748

1711.02633
1711.09059

PARTICLE-LEVEL CNN
Particle-level CNN (P-CNN) 

one dimensional CNN over a sequence of particles

11

x1 x2 x3 x4 x5 x6

kernel kj

k1 k2 k3

z1

z1=k1*x1+k2*x2+k3*x3

z2

z2=k1*x2+k2*x3+k3*x4

z3

z3=k1*x3+k2*x4+k3*x5

only one feature: xi  
(e.g., pT of the ith particle)

particle sequence 

“DeepAK8”
CMS-DP-2017-049

………

 particles, ordered by pT

fe
at

ur
es

Inclusive particles

………

 tracks, ordered by SIP2D

fe
at

ur
es

Charged particles

P-CNN
(10 layers)

………

 SVs, ordered by SIP2D

fe
at

ur
es

Secondary Vertices

Fully 
connected

1 layer,  
512 units, 

relu-activation, 
20% dropout

Output

softmax 
activation

P-CNN
(14 layers)

P-CNN
(14 layers)

kernels

kernels

kernels

P-CNN:
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AS… POINT CLOUDS?
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arXiv:1801.07829
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AS… POINT CLOUDS?
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AS… POINT CLOUDS?
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JET AS A PARTICLE CLOUD
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simulated top quark jet
anti-kT, R = 0.8, pT = 600 GeV
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POINT CLOUDS VS PARTICLE CLOUDS
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Point cloud 

points are intrinsically unordered 

primary information: 

3D coordinates in the xyz space

Particle cloud 

particles are intrinsically unordered 

primary information: 

2D coordinates in the η-φ space 

but also additional “features”: 

energy/momenta 

charge/particle type 

track quality/impact parameters/etc.

Much richer content than typical point clouds!
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WHY PARTICLE CLOUD?
Image 

can benefit directly from powerful and sophisticated algorithms (CNNs) from the 
computer vision community 

images are uniform grids of pixels: 

projecting particles into pixels leads to high sparsity and loss of granularity 

also nontrivial to include features other than particle energy/momenta (e.g., track 
impact parameters) 

Sequence 
preserves full granularity, no loss of information from pixelation 

straightforward to include any features for each particle 

all sequence-based algorithm (RNN/RecNN/1D CNN) assumes an explicit ordering 

but jet constituents are intrinsically unordered 

Point cloud 
shares all the benefits of sequence 

and points are unordered
 10
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LEARNING FROM POINT CLOUDS
Efficient representation already half of success 

but only half… 

the other half: a powerful network that fully exploits all the information in the 
representation 

Learning from point clouds 

active research area in the ML community mainly due to the prosperity of autonomous 
driving technology 

many custom algorithms proposed recently 

One of the key aspects is to respect/exploit the permutation invariance of the 
inputs 

one approach: use a “global” symmetric function over inputs (e.g., Deep Sets) 

adapted to particle clouds -> Energy Flow Network 

another approach: hierarchical learning from “local” to “global” 

an example: convolution operation 

key contributor to the overwhelming success of CNNs in image recognition 

can we adapt convolution to work on point clouds?

 11

see Patrick’s talk!

https://arxiv.org/abs/1703.06114
https://arxiv.org/abs/1810.05165
https://indico.cern.ch/event/745718/timetable/?view=standard#20-energy-flow-networks-deep-s
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CONVOLUTION ON REGULAR GRIDS
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Convolution

???
???
???

Regular grid

Point cloud

Conventional convolution only operates on regular grids and 
cannot be applied on point clouds 

point clouds are irregular 

how to define a “local” patch to convolve? 

point clouds are unordered 

conventional convolution operation (Σi Ki xi)  
is not invariant under permutation of the points (xi)
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CONVOLUTION ON POINT CLOUDS

Convolution on point clouds: EdgeConv [arXiv:1801.07829] 
treating a point cloud as a graph:  

each point is a vertex 

for each point, a local patch is defined by getting the K-nearest neighbors to it 

distance defined based on the point “coordinates” 

designing a symmetric “convolution” function 

define “edge feature” for each center-neighbor pair: eij = hΘ(xi, xj) 

same hΘ for all neighbor points, and all center points, for symmetry 

aggregate the edge features in a symmetric way: xi’ = Σj eij

 13
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DYNAMIC GRAPH CNN
EdgeConv shares many nice properties of regular CNNs 

incorporates local neighborhood information (correlations) 

can be stacked to perform a hierarchical learning from local to global features 

Dynamic Graph CNN (DGCNN) 

when stacking the EdgeConv layers, it is possible to recompute the graph using nearest 
neighbors in the features space produces by each layer 

i.e., the output features of each EdgeConv layer can be treated as a new “coordinate” for each 
point 

point distances can be updated using these learned coordinates (in a latent space) 

found to be beneficial in the ML paper 

Customization for particle clouds 

the original DGCNN is actually not directly applicable to jets, as the particle inputs have not 
only “coordinates” (i.e., η, φ), but also additional features (pT, charge, particle ID, etc.) 

to apply DGCNN on particle clouds, some customizations are made to the first EdgeConv layer: 

the nearest neighbor finding is purely based on the (η, φ) coordinates 

then, the other features are added to the (η, φ) coordinates of each particle for producing the 
edge features

 14
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NETWORK ARCHITECTURE
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EdgeConv
K=6, C=32

EdgeConv
K=6, C=32

EdgeConv
K=6, C=64

EdgeConv
K=6, C=64

EdgeConv
K=8, C=64

EdgeConv
K=8, C=64

EdgeConv
K=8, C=128

EdgeConv
K=8, C=128

EdgeConv
K=10, C=128

EdgeConv
K=10, C=128

EdgeConv
K=10, C=256

EdgeConv
K=10, C=256

Dense
256

Dropout
p=0.1

Dense
512

Dropout
p=0.5

Output

+ + +

Implemented with 

3 stages: k-nearest neighbors updated at the beginning of each stage 

batch normalization (BN) used after each EdgeConv operation 

residual connection (RC) [1512.03385, 1603.05027] added between EdgeConv layers 

BN and RC helped greatly for stabilizing the training and also improving the performance
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PERFORMANCE COMPARISON
The performance of DGCNN is benchmarked on two jet tagging tasks using public 
datasets: 

top tagging dataset: A. Butter, G. Kasieczka, T. Plehn and M. Russell [arXiv:1707.08966, link] 

quark/gluon tagging dataset: P. T. Komiske, E. M. Metodiev and J. Thaler [arXiv:1810.05165, link] 

very nice public datasets 

ML-friendly format, convenient for developing/testing new algorithms 

allow for consistent comparison between algorithms 

the community needs more public datasets 

especially ones closer to real experiments (pileup, tracking, detector resolution, etc.) 

open data/simulation in ML-friendly format from CMS and ATLAS would be of great help! 

Results compared with a few alternative algorithms 

1D CNN over particle sequence (P-CNN) 

CMS “DeepAK8” architecture [CMS-DP-2017-049] 

but using only information available in the datasets (e.g., no tracking) 

2D CNN over 64x64 jet image 

state-of-the-art model from image recognition: ResNeXt50 [arXiv:1611.05431] 

#filters reduced by a factor or 4 to avoid overfitting and also to speed up training 

Particle Flow Network (PFN) [arXiv:1810.05165]

 16

https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
https://energyflow.network/
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PERFORMANCE: TOP TAGGING
Top tagging: 

only particle 4-momentum is available 

train/val/test 1.2M/400k/400k 

results of more algorithms available at link 

We managed to push the boundary a bit further 
>20% lower background at signal efficiency of 30% 

Is the gain real? Or is it just learning more details of the 
parton shower model? 

but personally I would not really consider the jet tagging 
problem as “solved” 

especially facing realistic experimental challenges like 
pileup, detector effects, and additional information (e.g., 
tracking, timing, etc.)

 17

Performance on top-tagging dataset

Algorithm Accuracy ROC AUC 1/εbkg @ εsig=30%
1D P-CNN 0.930 0.9804 780

2D CNN [ResNeXt50] 0.936 0.9838 1086
DGCNN 0.937 0.9842 1160

PFN-r.r. [arXiv:1810.05165] 0.932 0.9819 ± 0.0001 888±17

better

https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeq16DAzspkDC4nDTyjMp1bWHRo/edit
https://arxiv.org/abs/1810.05165
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PERFORMANCE: QUARK/GLUON TAGGING 
Quark/gluon tagging  

dataset from P. T. Komiske, E. M. Metodiev 
and J. Thaler [arXiv:1810.05165, link] 

train/val/test 1.6M/200k/200k 

two versions with different information: 

momentum-only 

momentum + realistic particle ID (e/µ/γ/
charged hadron/neutral hadron) + charge

 18

Performance on quark/gluon-tagging dataset

Algorithm Accuracy ROC AUC 1/εg @ εq=50%

Momentum
-only

PFN [arXiv:1810.05165] - 0.8911 ± 0.0008 30.8 ± 0.4
2D CNN [ResNeXt50] 0.821 0.8960 30.9

DGCNN 0.826 0.8988 32.8

Momentum 
+ realistic 
particle ID

PFN-Ex [arXiv:1810.05165] - 0.9005 ± 0.0003 34.7 ± 0.4
1D P-CNN 0.826 0.8996 34.9
DGCNN 0.835 0.9073 36.8

better

https://energyflow.network/
https://arxiv.org/abs/1810.05165
https://arxiv.org/abs/1810.05165
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TRAINING AND INFERENCE SPEED
Another important factor of a ML algorithm is the training and 
inference speed 

benchmarked on a GTX 1080Ti 

current ML package not well optimized for graph network 

future implementation/hardware(e.g., FPGA) may greatly improve the speed

 19
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OUTLOOK
We present another point cloud inspired approach for jet tagging 

a jet can be viewed as a cloud of unordered particles 

dynamic graph CNN, based on permutation-invariant EdgeConv operation, is 
applied on particle clouds for jet tagging 

better performance for jet tagging compared to existing approaches based on 
jet images and sequences 

Point cloud: a natural and flexible representation for jets as well as 
collision events, with a rich connection yet to be fully explored 

point cloud classification (labelling the whole cloud) <-> jet tagging 

point cloud segmentation (labelling each point) 

pileup identification? 

particle tracking? 

so far we are importing expertise from ML community 

can we propose better ML algorithms based on physics? 

can we export better ideas to the ML community?
 20
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OUTLOOK (CONT.)
Point cloud: a natural and flexible representation for jets as well as 
collision events, with a rich connection yet to be fully explored 

can we peek in the ML model to see what/how it learned? 

can we learn jet physics from ML?

 21

distance matrix
before EdgeConv

distance matrix
after EdgeConv

distance matrix
before EdgeConv

distance matrix
after EdgeConv

top jet

QCD jet
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TOP TAGGING COMPARISON

 23

• VERY similar 
performance 

• Difference in 3rd digit for 
area under curve

• Larger difference in efficiency

• Have we solved this simple 
problem?

• What about stability, 
uncertainties?

• Are there complementarities?

Thanks for all submissions!


