End-to-end Jet ID for quark/gluon discrimination using CMS Open Data

<u>M. Andrews</u>¹, J. Alison¹, S. An¹, P. Bryant¹, M. Paulini¹, B. Poczos¹ S. Gleyzer² B. Burkle³, M. Narain³, E. Usai³ ¹Carnegie Mellon University, ²University of Florida, ³Brown University

ML4Jets Workshop 2018, 14-16 NOV 2018 Fermilab

E2E | Outline

- Motivation
- The CMS Detector
- The End-to-end Approach
- Quark vs. Gluon Jet Identification
- Di-quark vs. Di-gluon Event Identification
- Conclusions

Motivation Typical Jet ID

Break down classification into different sub-steps which are optimized separately

Jet ID | Images

Jet images for quark vs gluon discrimination not new:

- See P. Komiske et al.: https://arxiv.org/abs/1612.01551
- See ATLAS: http://cds.cern.ch/record/2275641

Translated Pseudorapidity n

after Pixel Standardization

0.15

0.05

0.15 🕺

0.05

0.4

0.2

0.4

0.2

Jet ID | Images vs High-level features

RecNN, Jet ID for QCD vs boosted W jet

- K. Cranmer et al.: https://arxiv.org/pdf/1702.00748.pdf
- **DELPHES** detector simulation

RecNN

- Applied to quark vs gluon by T. Cheng: https://arxiv.org/pdf/1711.02633.pdf
- Traditional jet images perform less well than 4-momenta

	Projected into images			
Traditional	towers	MaxOut	0.8418	-
	towers	k_t	0.8321 ± 0.0025	12.7 ± 0.4
Jet images	towers	$k_t \ (\text{gated})$	0.8277 ± 0.0028	12.4 ± 0.3

	with gating (see Appendix A)				
towers	k_t	0.8822 ± 0.0006	25.4 ± 0.4		
towers	C/A	0.8861 ± 0.0014	26.2 ± 0.8		
towers	anti- k_t	0.8804 ± 0.0010	24.4 ± 0.4		
towers	$\operatorname{asc-}p_T$	0.8849 ± 0.0012	27.2 ± 0.8		
towers	$\operatorname{desc}-p_T$	$\textbf{0.8864} \pm \textbf{0.0007}$	$\textbf{27.5} \pm \textbf{0.6}$		
towers	random	0.8751 ± 0.0029	22.8 ± 1.2		

With goting (coo Appendix A)

Jet ID | Images vs High-level features

CMS DeepJet, Jet ID for quark vs gluon jet

- CMS: <u>https://cds.cern.ch/record/2275226</u>
- Jets from QCD dijet, with PU, $|\eta| < 1.3$ or $1.3 < |\eta| < 2.4$
- CMS GEANT4 full detector simulation
- DeepJet comparable to RecNN*

			Area under ROC	ϵ (tight)	ϵ (medium)	ϵ (loose)
		QCD	$\hat{p}_T = 80 - 120 \mathrm{GeV}$, jet $p_{\mathrm{T}} > 7$	'0 GeV	
	0.796	DeepJet central	0.204	0.17	0.51	0.65
	0.797	DeepJet forward	0.203	0.15	0.50	0.65
ROC	0.789	Convolution central	0.211	0.15	0.49	0.64
AUC*	0.785	Convolution forward	0.215	0.13	0.47	0.63
	0.795	Recurrent central	0.205	0.16	0.51	0.65
	0.795	Recurrent forward	0.205	0.14	0.49	0.65

***NOTE:** "In addition, the p_T and η of the jet, the number of charged and neutral candidates, and the number of secondary vertices within the jet are given to the following dense layer with 128 nodes."

CMS | Geometry & Particle ID

CMS | Detector Segmentation

HCAL Endcap (iφ, iη)

Image Credit: CERN

CMS | Detector Geometry

End-to-end Event ID

Optimize for the final classification objective

Detector data as fundamental (maximum?) measured information

Detector Data

Event Class

(e.g. digluon vs. diquark)

End-to-end Jet ID

Optimize for the final classification objective

Detector data as fundamental (maximum?) measured information

Jet ID | Traditional vs E2E Image

Traditional jet image

E2E jet image

Note: Not the same jet.

CMS OpenData QCD Samples

- Leading jet from QCD dijet qq' (*uds*) or gg, EMenriched @ 8 TeV
- CMS GEANT4 full detector simulation, PTYHIA 6
- β_T: 80-170 GeV, reco p_T > 70 GeV, |η| < 1.8
- Run-dependent (PU): 18-21
- Produced and ntuplized with CMSSW 5_3_32
- Sample split:
 - Training set: 576k jets (of which, 26k jets for validation)
 - Test set: 139k jets
 - Balanced samples per class
 - Balanced PU representation per class
- Architecture: ResNet-15 trained from scratch on an NVIDIA Titan X/p using Pytorch 0.4

1 px = 0.0174 x 0.0174 Δη x Δφ

Tracks

ECAL

HCAL

E2E Image | gluon

Radiation pattern more dispersed (top: overlays, bottom: single jet)

Ľ. È. È. 0ò iφ′ iφ′ iφ′

1 px = 0.0174 x 0.0174 Δη x Δφ

İΦ

Tracks

ECAL

HCAL

E2E Image | quark

Radiation pattern more focused (top: overlays, bottom: single jet)

15

	ROC AUC
E2E jet image, Tracks	0.782
E2E jet image, ECAL	0.760
E2E jet image, HCAL	0.682

• E2E Results, Jet ID

- Provides insight into detector performance / particle ID
- Spatial resolution important: track info more valuable than shower/energy information from any one calorimeter
- Handles sparsity well

	ROC AUC
E2E jet image, ECAL+Tracks	0.804
E2E jet image, Tracks	0.782
E2E jet image, ECAL+HCAL	0.781

• E2E Results, Jet ID

- Combine two subdetector images
- Spatial resolution important: charged hadron info from Tracks more valuable than from HCAL
- Track info alone as valuable as combined calo info

	ROC AUC
E2E jet image, ECAL+HCAL+Tracks	0.808
E2E jet image, ECAL+Tracks	0.804

• E2E Results, Jet ID

- Combine ECAL+HCAL+Tracks images
- ECAL+Tracks sufficient for strong discrimination: HCAL info not so important
- Track info supplemented with calo info works best.

	ROC AUC
E2E image, ECAL+HCAL+Tracks	0.8077 ± 0.0003*
RecNN, ascending-p _T	$0.8017 \pm 0.0003^*$
RecNN, descending-pT	0.802
RecNN, anti-k _T	0.801
RecNN, Cambridge/Aachen	0.801
RecNN, no rotation/reclustering	0.800
RecNN, k _T	0.800
RecNN, k _T -colinear10-max	0.799
RecNN, random	0.797

RecNN Results, Jet ID

- Use 4-momenta derived from CMS Particle Flow
- Perform boost/rotation, then reclustering with different algos
- E2E jet images perform well

- Classify the full event as either QCD di-quark or di-gluon
- In addition to local jet physics, global event-level physics factors in: jet 4-momenta, qq spin-correlations and polarization
- Problem becomes much richer!

• Scenario A: 2 x jet images

Fully-connected, 128 x 2

• Scenario B: 2 x jet images + jet 4-momenta

Fully-connected, 128 x 2

Scenario C: Fully end-to-end detector image

	ROC AUC
Scenario A	0.876
Scenario B	0.878
Scenario C	0.889

• Local or global physics? Part I.

- Performance dominated by jet-level differences (Scenario A vs. B or C)
- Both dijets are non-resonant decays, so jet 4-momenta doesn't hold much discrimination power (Scenario B vs. A)
- Fully E2E approach (Scenario C) picking up on subtle, event-level effects not captured by either B or A?

- Is the E2E relying on the underlying event/PU?
 - Try Scenario C-Zero: zero out all pixels outside of the two jet windows

	ROC AUC
Scenario C	0.889
Scenario C-Zero	0.887
Scenario C, evaluated on C-Zero	0.883
Scenario C-Zero, evaluated on C	0.884

Is the E2E relying on the underlying event/PU?

 E2E event classifier not sensitive to underlying event and PU outside of jet region of interest

- Local or global physics? Part II.
 - Scenario C-Zero-Graft: Graft jets from different events onto a new image with fake event-level info but otherwise real jets

• Local or global physics? Part II.

 Use model trained on Scenario C-Zero and evaluate on grafted events, Scenario C-Zero-Graft

	ROC AUC
Scenario C-Zero	0.887
Scenario C-Zero, evaluated on C-Zero-Graft	0.877
Scenario A	0.876

Consistent with findings from Part I:

- Performance from jet-level differences preserved
- The subtle event-level info is lost in Scenario C-Zero-Graft score now similar to 2 x jet images (Scenario A)
- E2E learns event-level correlations

E2E | Conclusions

E2E Jet ID:

- Achieves quark vs. gluon discrimination competitive with existing state-of-the-art jet ID classifiers
- Not all jet images are created equally: E2E techniques help to optimize full detector performance

E2E Event ID:

- Able to capturesubtle, event-level correlations not present at jetlevel that may otherwise be difficult to model by hand
 - Capable of learning particle phenomenology
 - Can be be "reversed-engineered" to understand what deep physics is being learned
- Smart enough to know what is noise/irrelevant in the image without any human intervention

E2E | Outlook

• How far can we take E2E approach?

- Use the full Tracker information?
- Add Muon Trackers
- Effects of higher pile-up?
- Apply to boosted topologies

BACKUP

HCAL | Segmentation

ECAL | Hit Reconstruction

http://iopscience.iop.org/article/10.1088/1742-6596/1085/4/042022

Scale: 1 pixel = 1 crystal

Scintillating
CrystalSignal
PulseDigitized Hit
("DIGI")Reconstructed
Hit ("RecHit")

Jet ID | q vs g

RecNN, Jet ID for quark vs gluon jet

- *T. Cheng:* <u>https://arxiv.org/pdf/1711.02633.pdf</u>
- Jets from QCD dijet gg or qq events, no PU, $|\eta| < 2.5$
- DELPHES detector simulation

Recursive Neural Networks in Quark/Gluon Tagging

-	
c n	
0	

ROC AUC $R_{\epsilon=80\%}$ $R_{\epsilon=50\%}$	200 GeV	300 GeV	500 GeV	1000 GeV
BDT	0.8164 3.1 10.5	0.8443 3.8 16.5	0.8385 3.5 14.1	0.8421 3.6 16.1
RecNN without pflow identification	0.8344 3.4 12.9	0.8390 3.6 14.4	0.8505 3.9 16.9	0.8623 4.2 21.9
RecNN with categorical pflow	0.8392 3.6 14.0	0.8443 3.8 16.5	0.8517 4.0 17.8	0.8637 4.4 22.0
RecNN with pt-weighted charge	0.8340 3.5 12.8	0.8453 3.9 14.5	0.8525 4.0 18.6	0.8616 4.3 20.4

Table 2 AUCs and background rejection rates for different jet $p_T s$. The baseline BDT and three scenarios concerning particle flow identification are considered. The largest AUCs and $R_{\epsilon=50\%}$ s are highlighted in bold.