Machine learning for jet physics 2018

Simulation Independent Methods: Overview

UNIVERSITY OF

OREGON

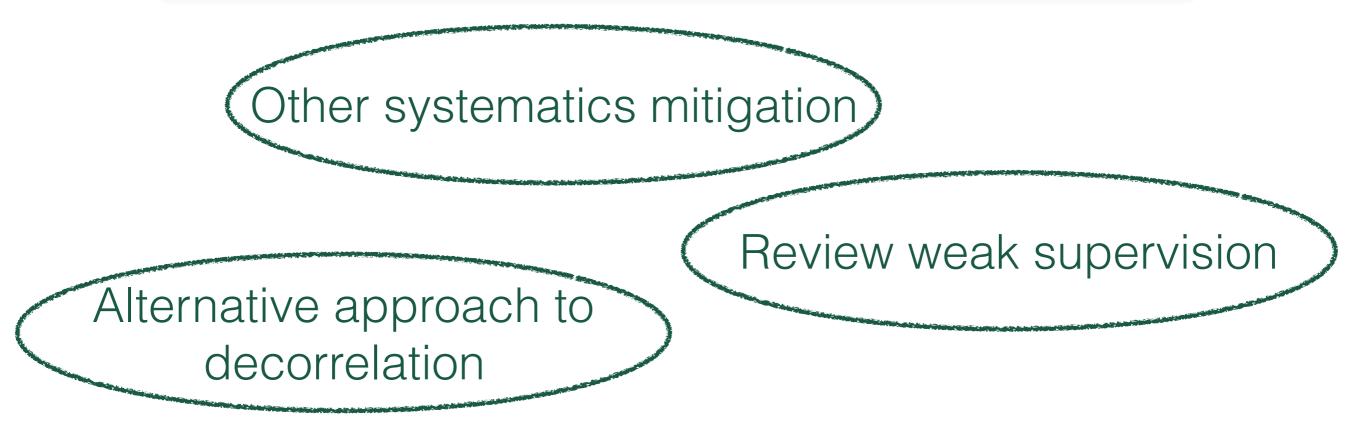


bostdiek@uoregon.edu

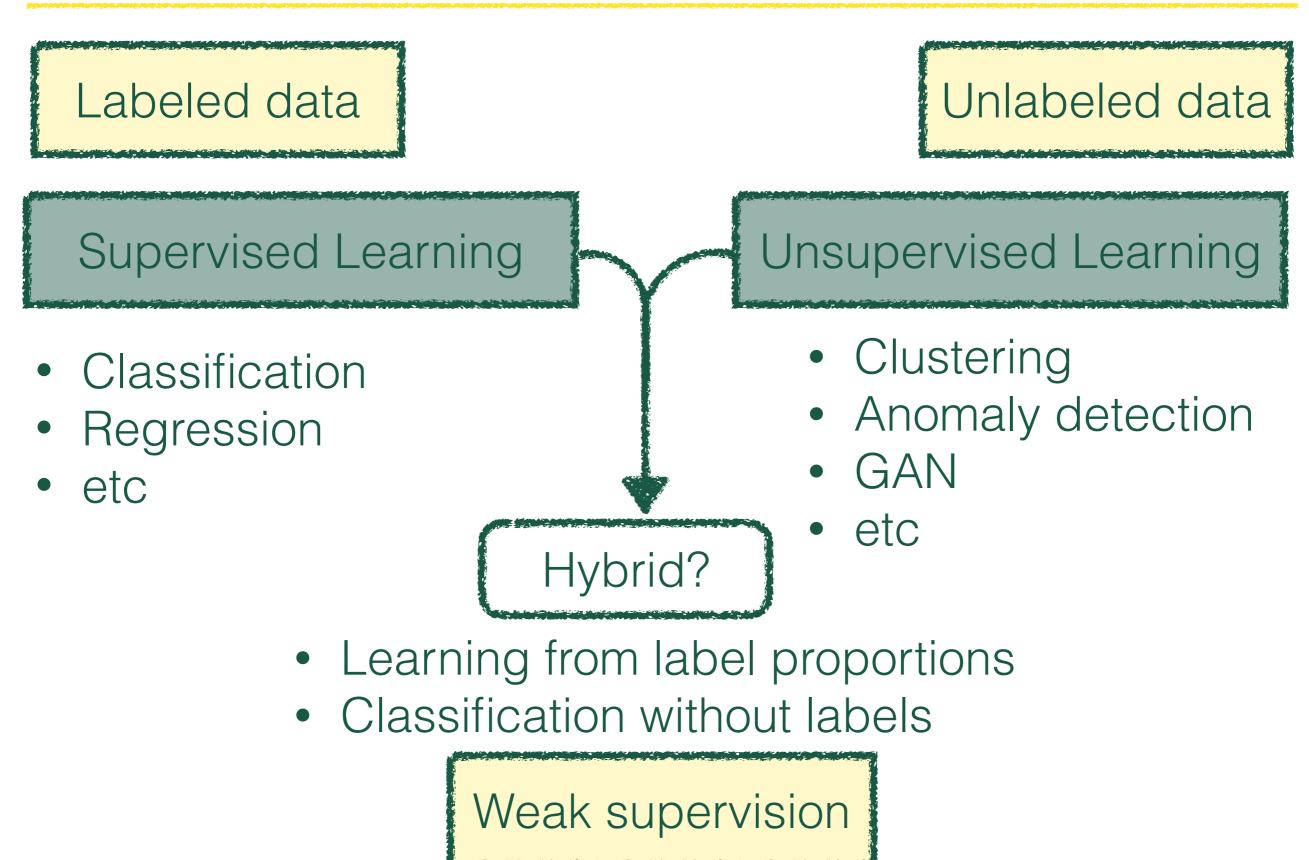
Bryan Ostdiek

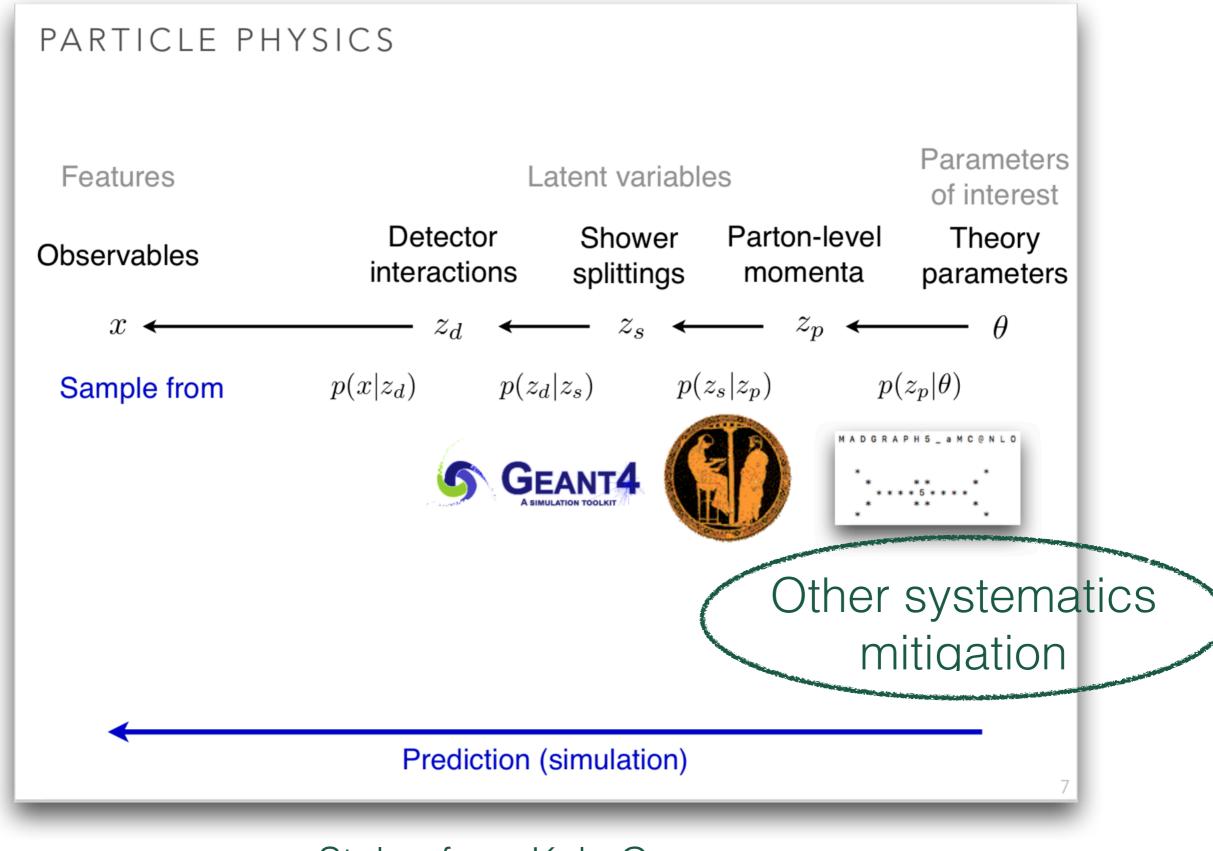
Talks from last year

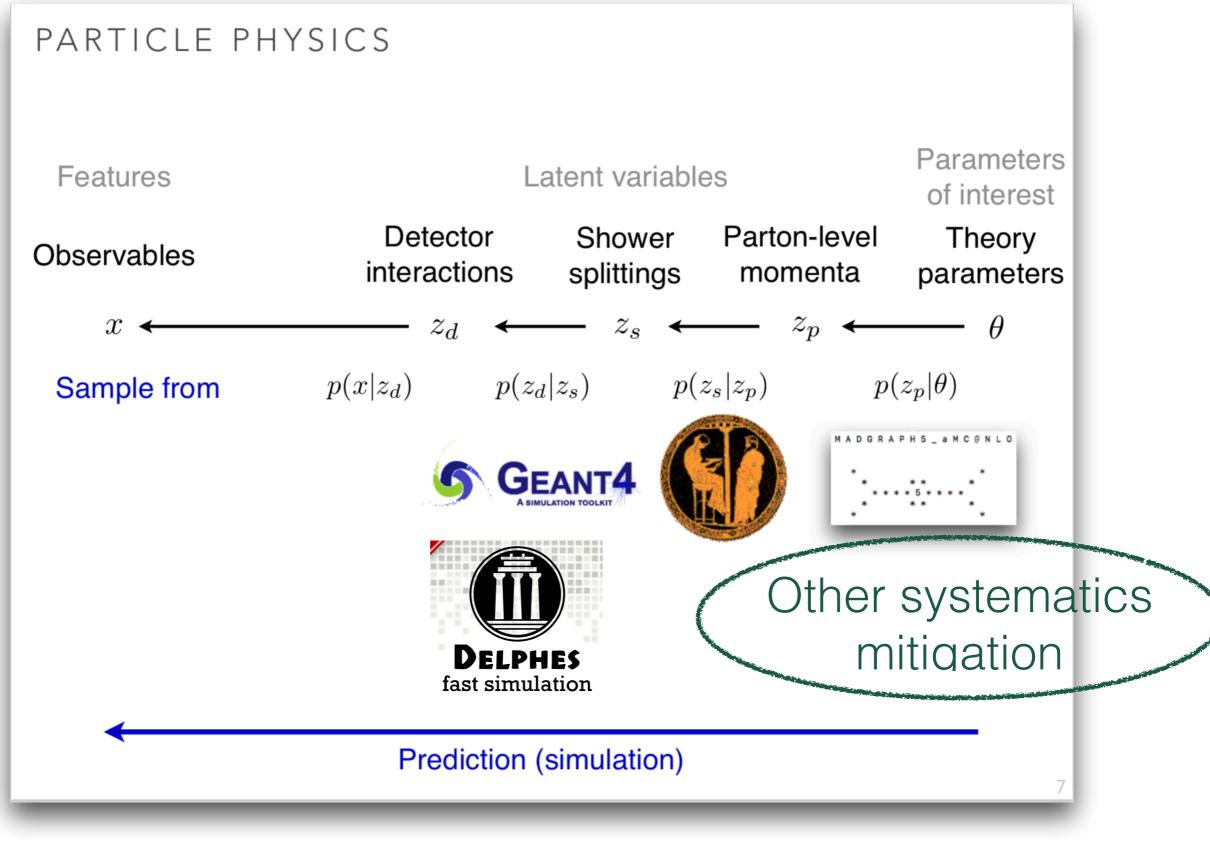
Introduction and Overview (15'+5')	Marat Freytsis 🥝
2-100, Lawrence Berkeley National Laboratory	09:00 - 09:20
"Planing" to expose what the machine is learning (15'+5')	Bryan Ostdiek 🥝
2-100, Lawrence Berkeley National Laboratory	09:20 - 09:40
Weak Supervision in High Dimensions (15'+5')	Eric Metodiev 🥝
2-100, Lawrence Berkeley National Laboratory	09:40 - 10:00
Building an anti-QCD tagger (15'+5')	Jack Collins 🥖
2-100, Lawrence Berkeley National Laboratory	10:00 - 10:20
Adversarial Approaches (15'+5')	Kyle Cranmer 🥝
2-100, Lawrence Berkeley National Laboratory	10:20 - 10:40

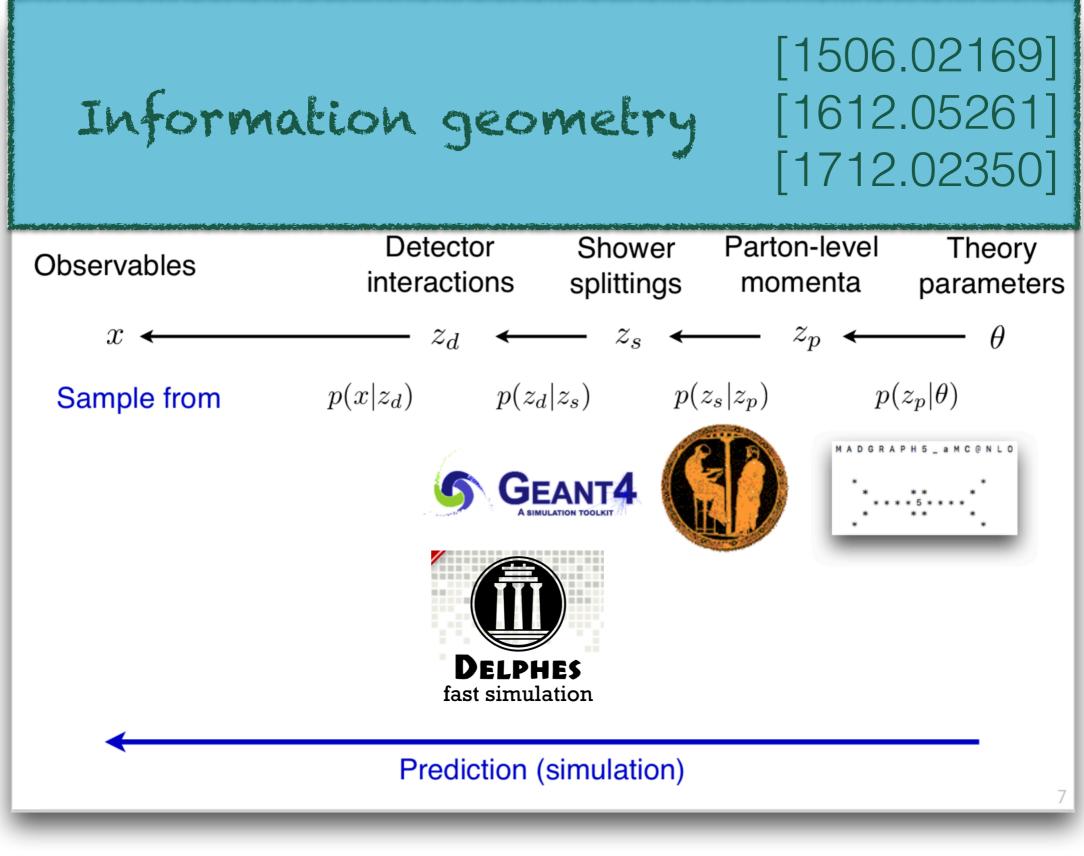


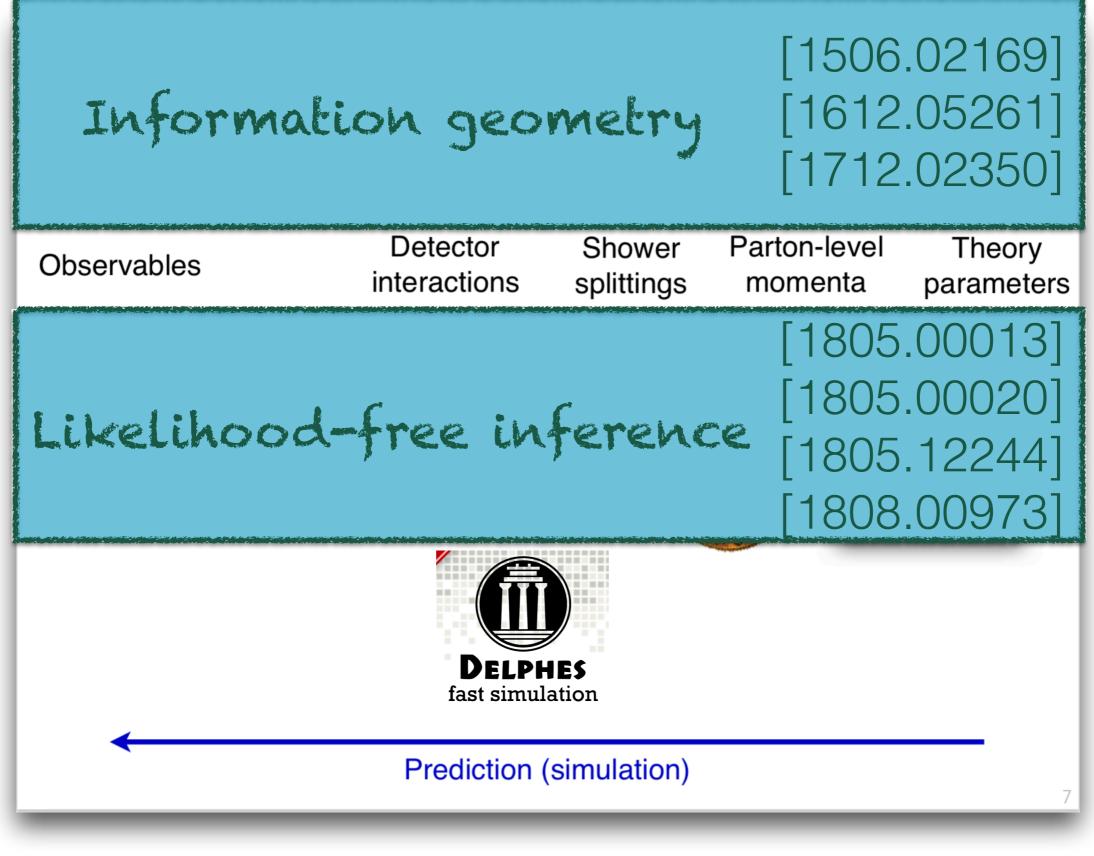
Learning overview

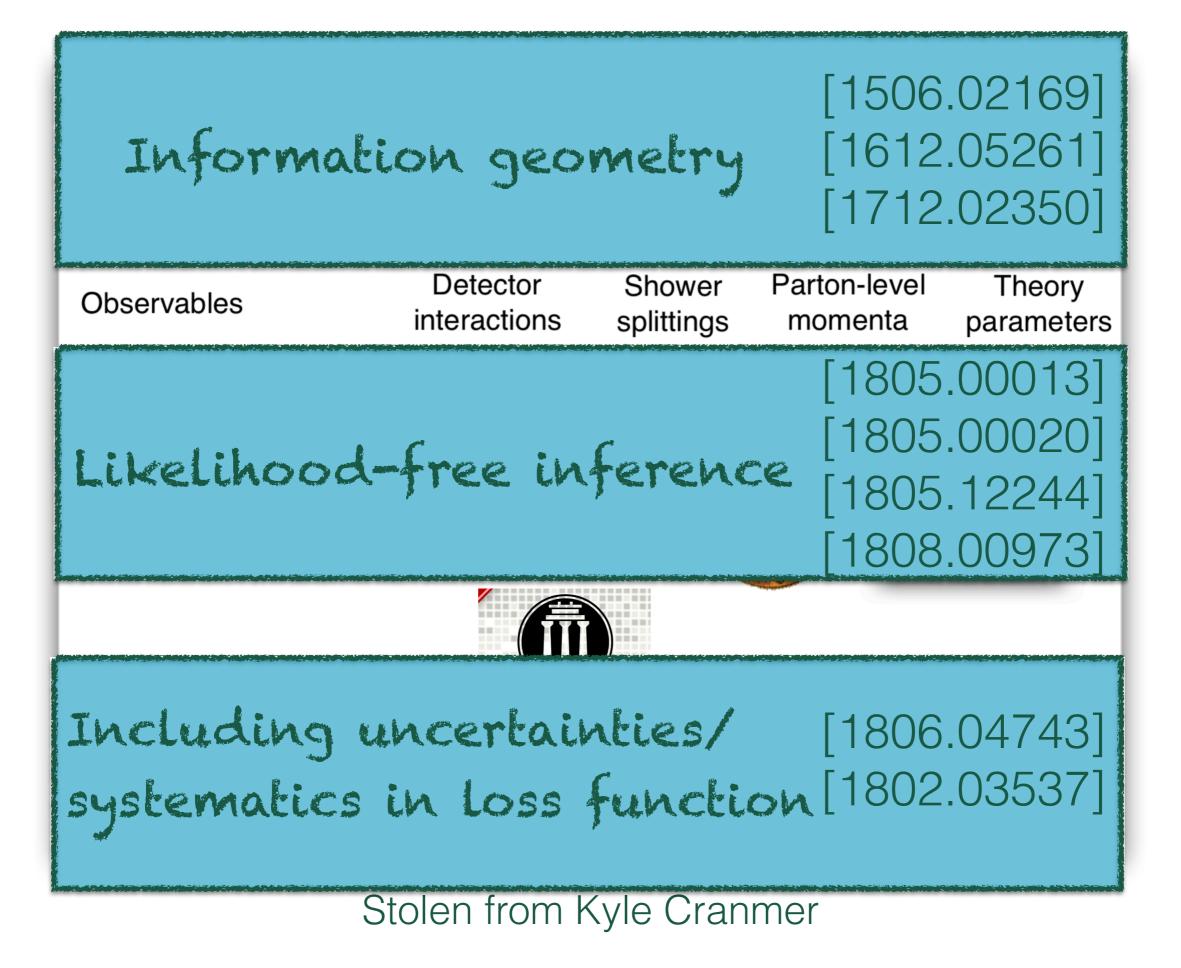












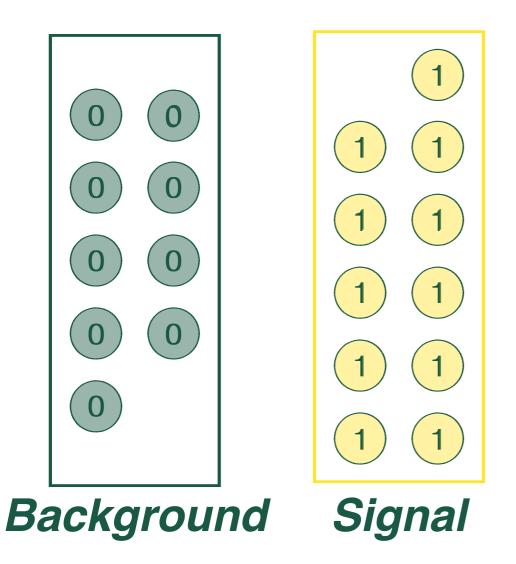
"Weakly Supervised Classification in High Energy Physics," Dery, Nachman, Rubbo, and Schwartzman. [1702.00414]

"(Machine) Learning to Do More with Less," Cohen, Freytsis, and **BO.** [1706.09451]

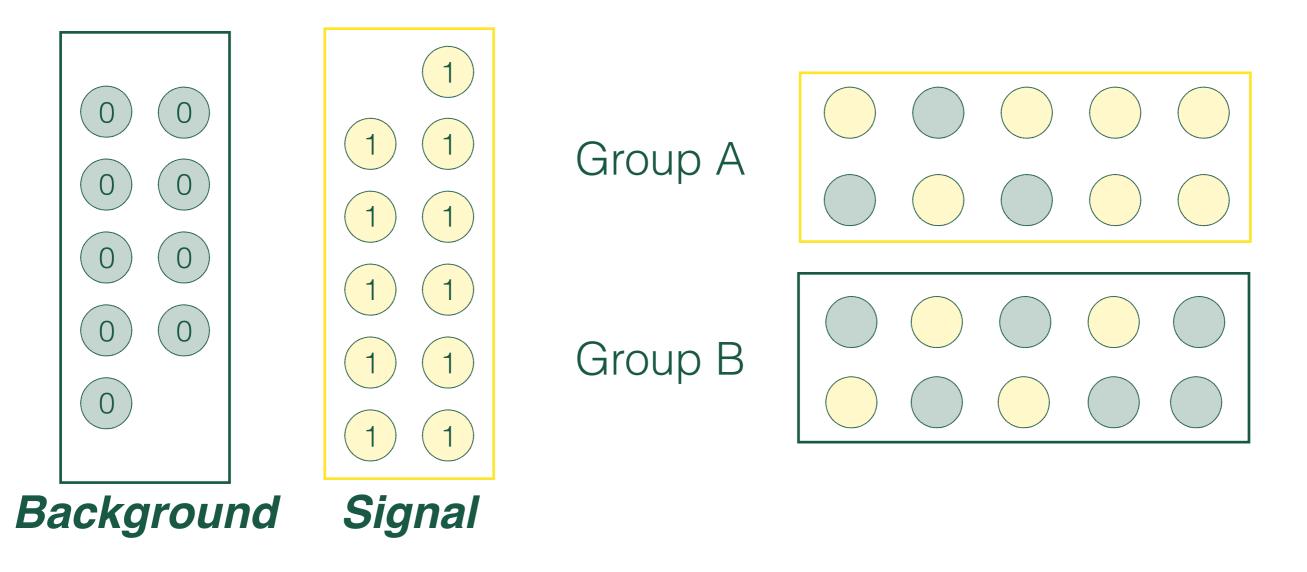
"<u>Classification without labels: Learning from mixed</u> <u>samples in high energy physics</u>," Metodiev, Nachman, and Thaler. [1708.02949]

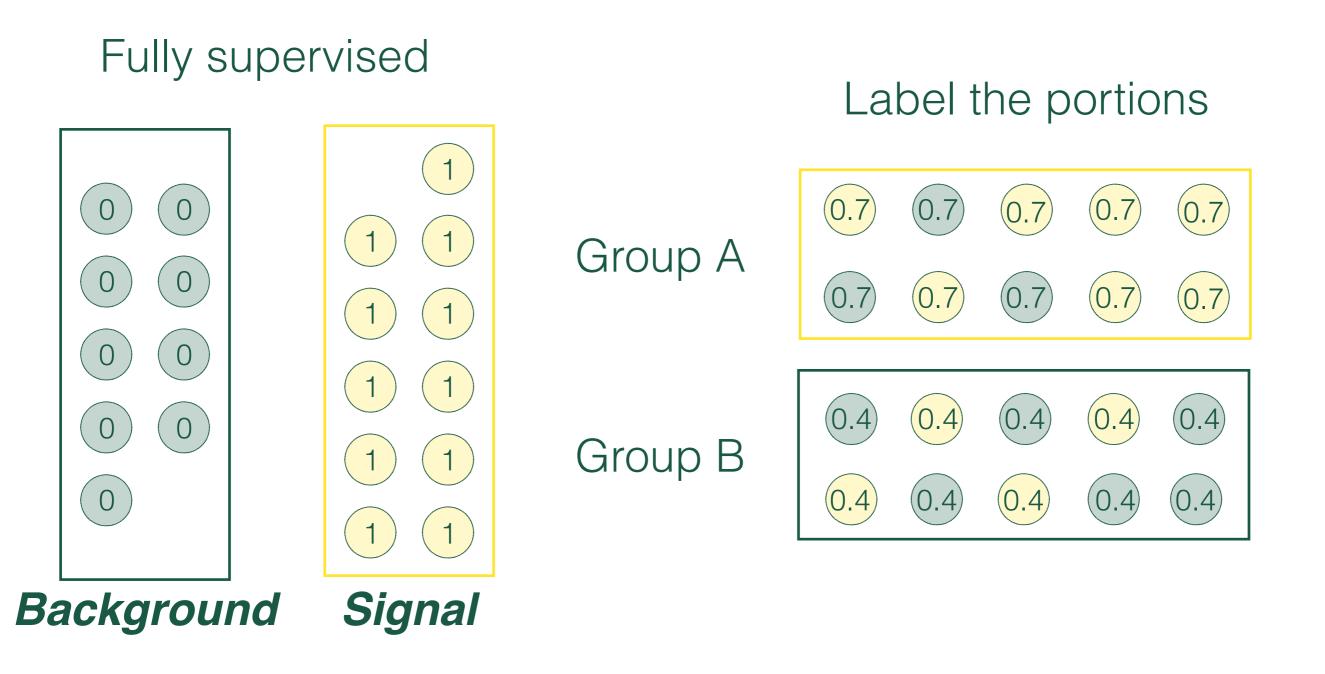
"Learning to Classify from Impure Samples," Komiske, Metodiev, Nachman, and Schwartz. [1801.10158]

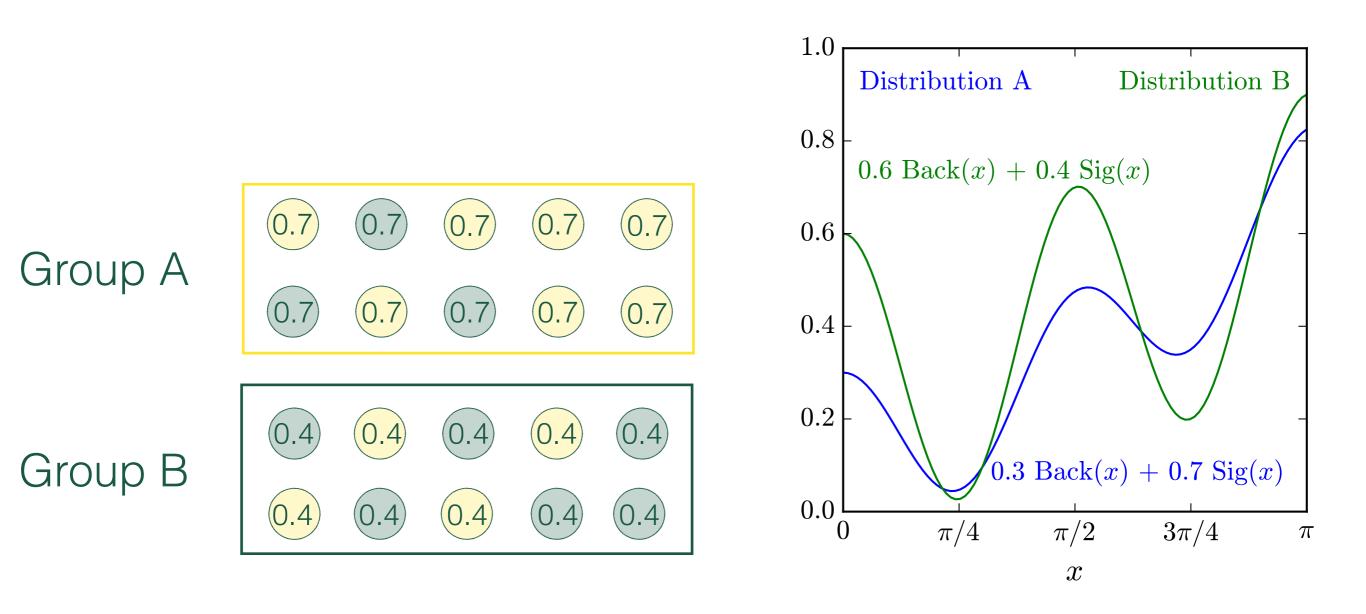
Fully supervised

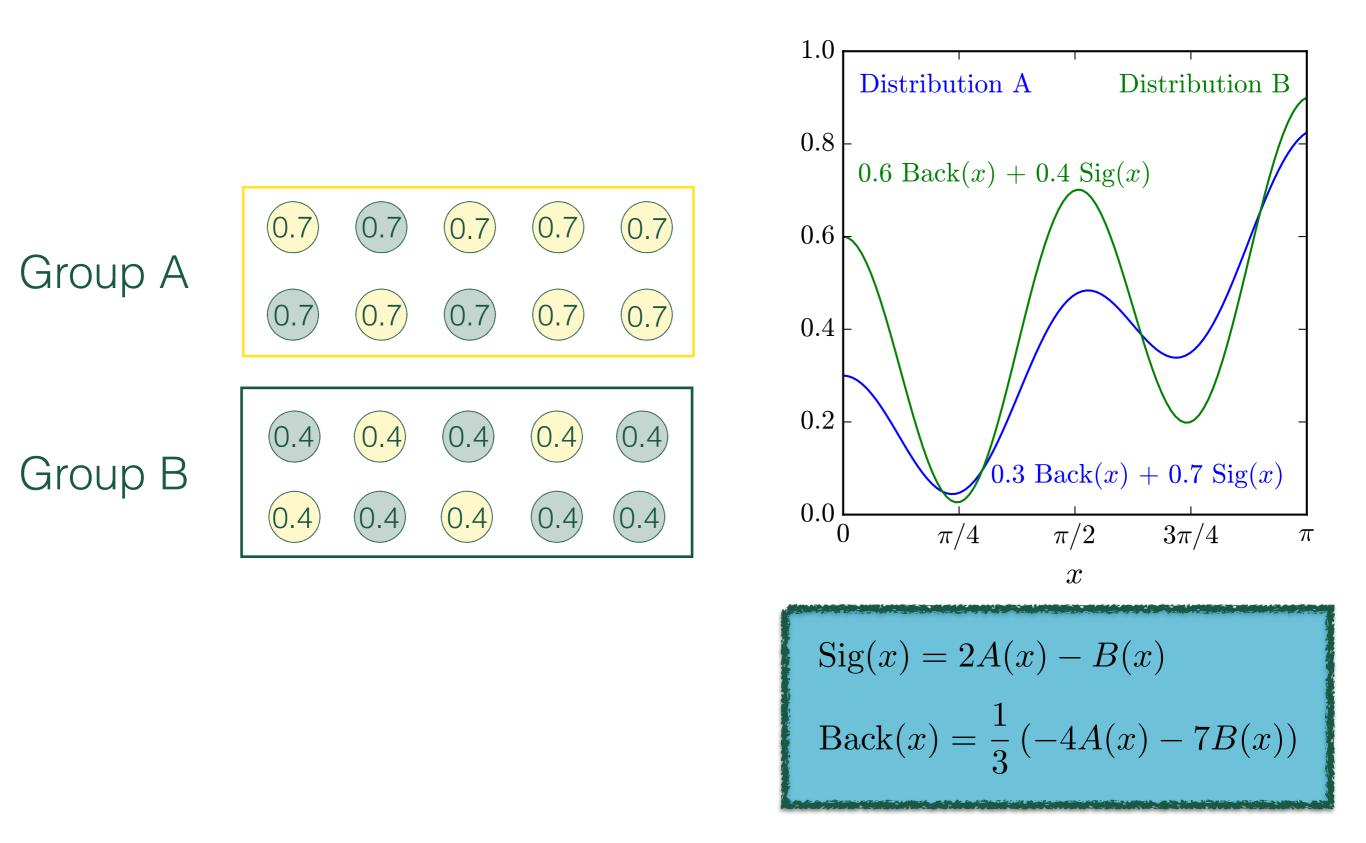


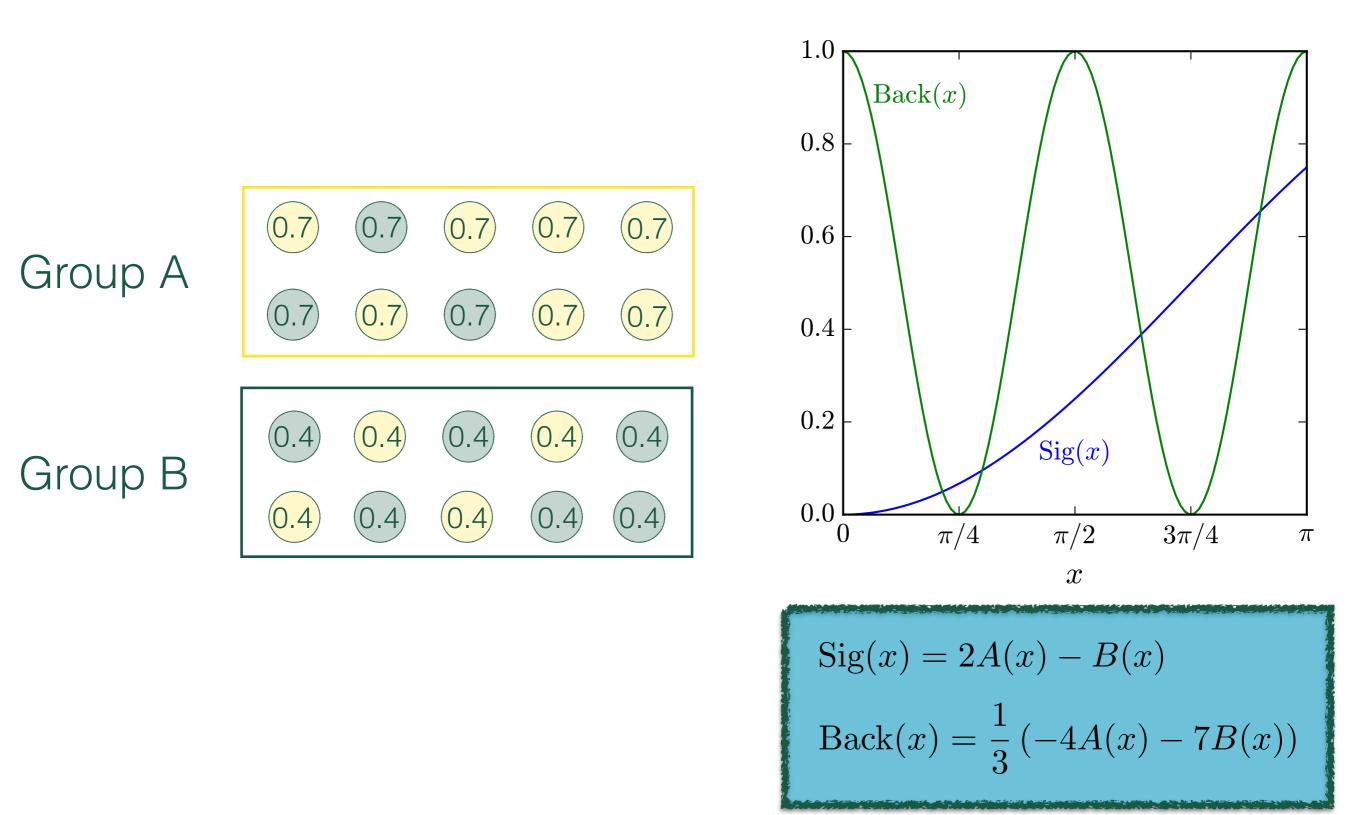
Fully supervised











0.7

(0.7

0.4

0.7

(0.7)

(0.7)

0.4

(0.7)

(0.7)

0.4

0.4

Group A

Group B

Make a histogram of the multi-dimensional data

$$h_{A,i} = y_A h_{1,i} + (1 - y_A) h_{0,i}$$

$$h_{B,i} = y_B h_{1,i} + (1 - y_B) h_{0,i}$$

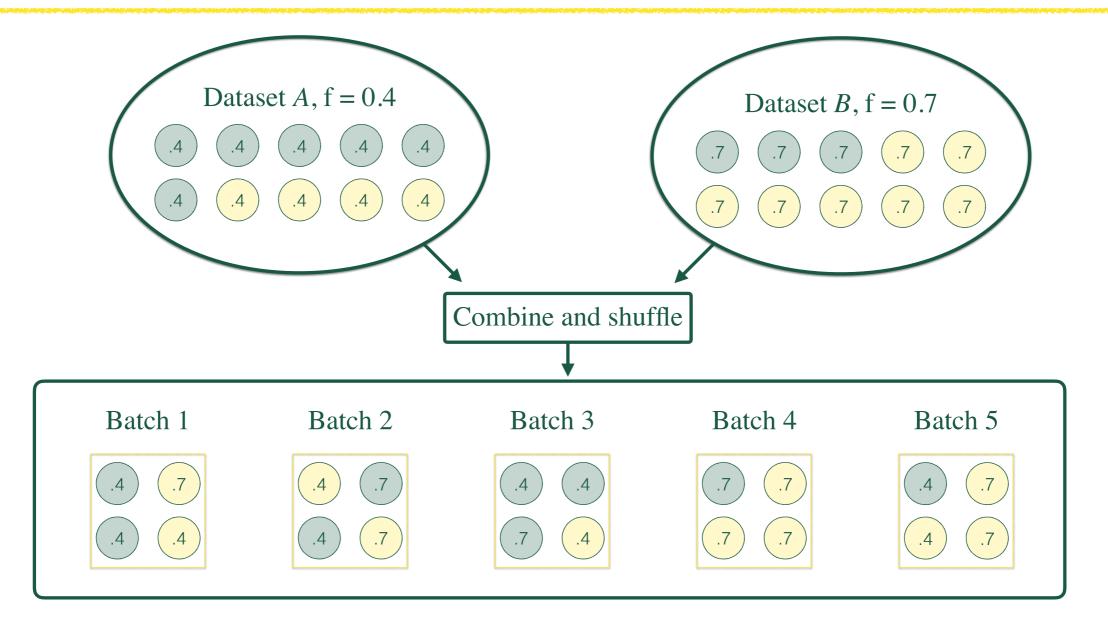
Invert

$$h_{0,i} = \frac{y_A \ h_{B,i} - y_B \ h_{A,i}}{y_A - y_B}$$
$$h_{1,i} = \frac{(1 - y_B)h_{A,i} - (1 - y_A)h_{B,i}}{y_A - y_B}$$

Machine learning helps with:

- Large dimensionality
- Over-constrained (more groups)
- Finite statistics

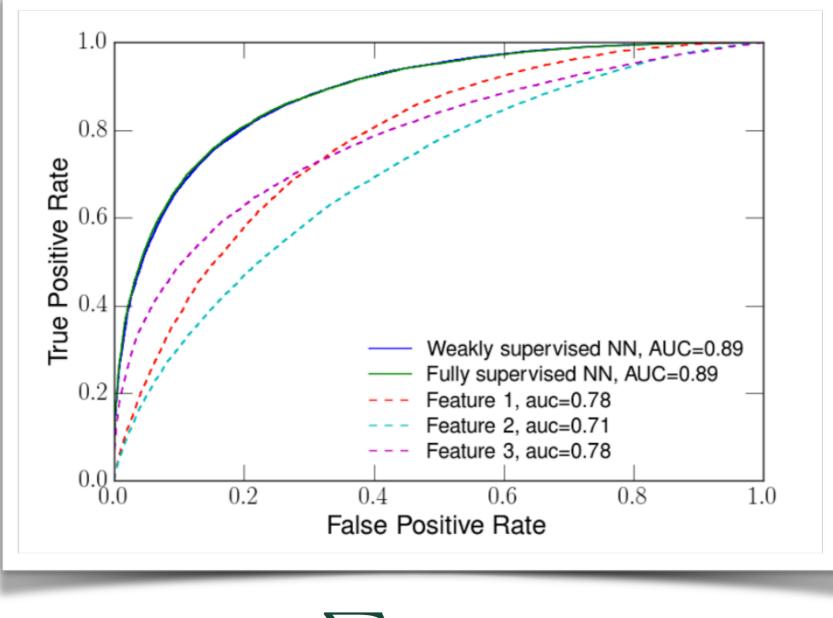
Weak supervision - LLP



$$\ell_{LLP} = \sum_{batches} |\langle f_{t,i} \rangle - \langle y_{p,i} \rangle|$$

L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, JHEP **1705**, 145 (2017) doi:10.1007/JHEP05(2017)145 [arXiv:1702.00414 [hep-ph]]

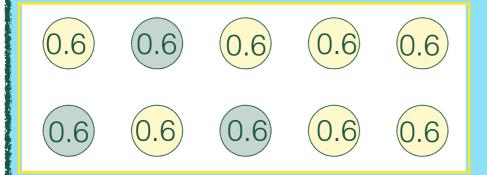
Weak supervision - LLP



$$\ell_{LLP} = \sum_{batches} |\langle f_{t,i} \rangle - \langle y_{p,i} \rangle|$$

L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, JHEP **1705**, 145 (2017) doi:10.1007/JHEP05(2017)145 [arXiv:1702.00414 [hep-ph]]

What if there are uncertainties on the ratio?



Cohen, Freytsis, BO [1706.09451] Label errors don't affect classifier

Metodiev, Nachman, Thaler [1708.02949] Possible to do classification with arbitrary labels

Theorem 1 Given mixed samples M_1 and M_2 defined in terms of pure samples S and B with signal fractions $f_1 > f_2$, an optimal classifier trained to distinguish M_1 from M_2 is also optimal for distinguishing S from B.

Metodiev, Nachman, and Thaler [arXiv:1708.02949]

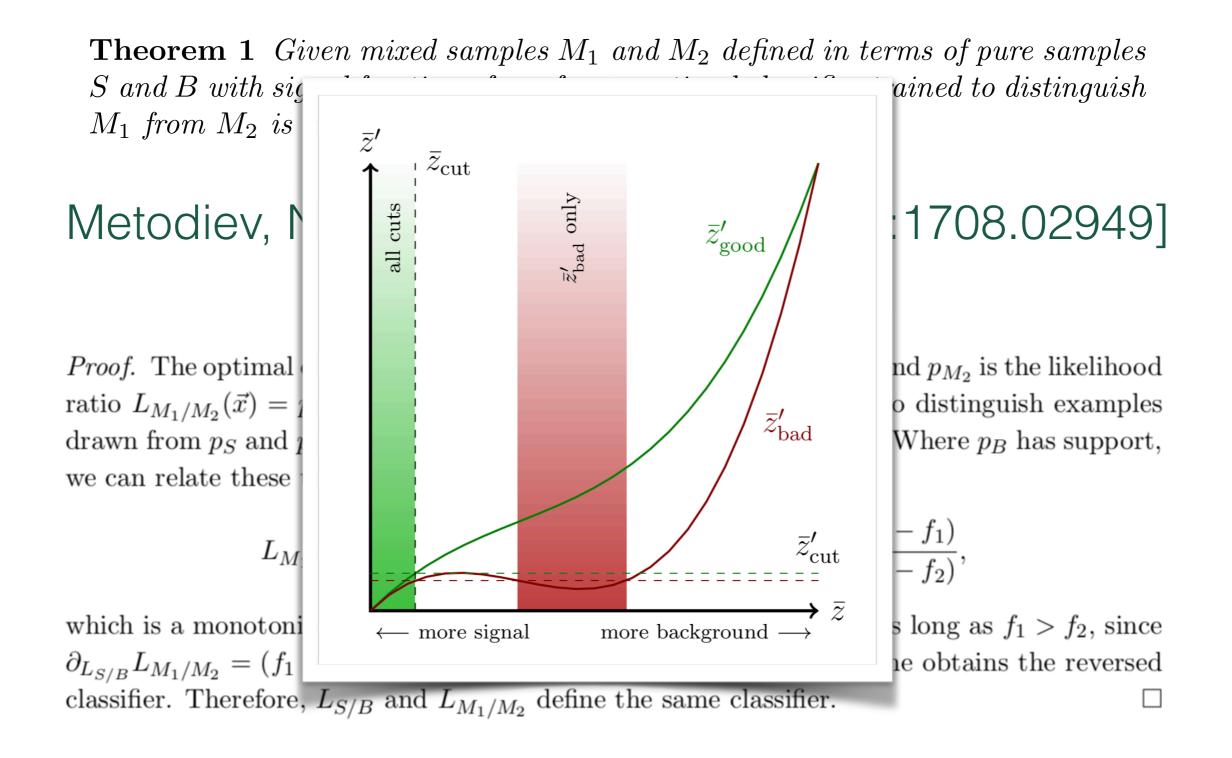
Theorem 1 Given mixed samples M_1 and M_2 defined in terms of pure samples S and B with signal fractions $f_1 > f_2$, an optimal classifier trained to distinguish M_1 from M_2 is also optimal for distinguishing S from B.

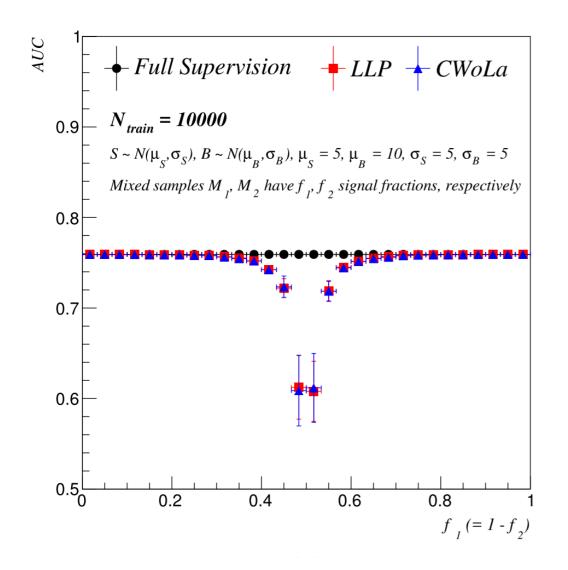
Metodiev, Nachman, and Thaler [arXiv:1708.02949]

Proof. The optimal classifier to distinguish examples drawn from p_{M_1} and p_{M_2} is the likelihood ratio $L_{M_1/M_2}(\vec{x}) = p_{M_1}(\vec{x})/p_{M_2}(\vec{x})$. Similarly, the optimal classifier to distinguish examples drawn from p_S and p_B is the likelihood ratio $L_{S/B}(\vec{x}) = p_S(\vec{x})/p_B(\vec{x})$. Where p_B has support, we can relate these two likelihood ratios algebraically:

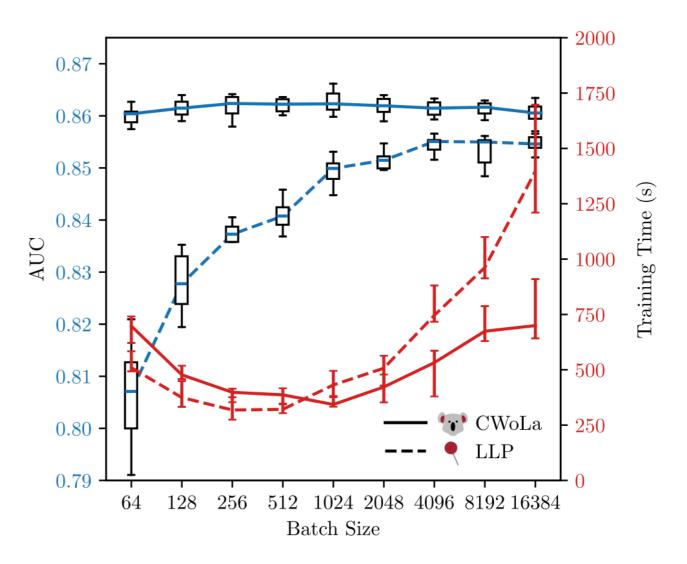
$$L_{M_1/M_2} = \frac{p_{M_1}}{p_{M_2}} = \frac{f_1 \, p_S + (1 - f_1) \, p_B}{f_2 \, p_S + (1 - f_2) \, p_B} = \frac{f_1 \, L_{S/B} + (1 - f_1)}{f_2 \, L_{S/B} + (1 - f_2)},$$

which is a monotonically increasing rescaling of the likelihood $L_{S/B}$ as long as $f_1 > f_2$, since $\partial_{L_{S/B}} L_{M_1/M_2} = (f_1 - f_2)/(f_2 L_{S/B} - f_2 + 1)^2 > 0$. If $f_1 < f_2$, then one obtains the reversed classifier. Therefore, $L_{S/B}$ and L_{M_1/M_2} define the same classifier.





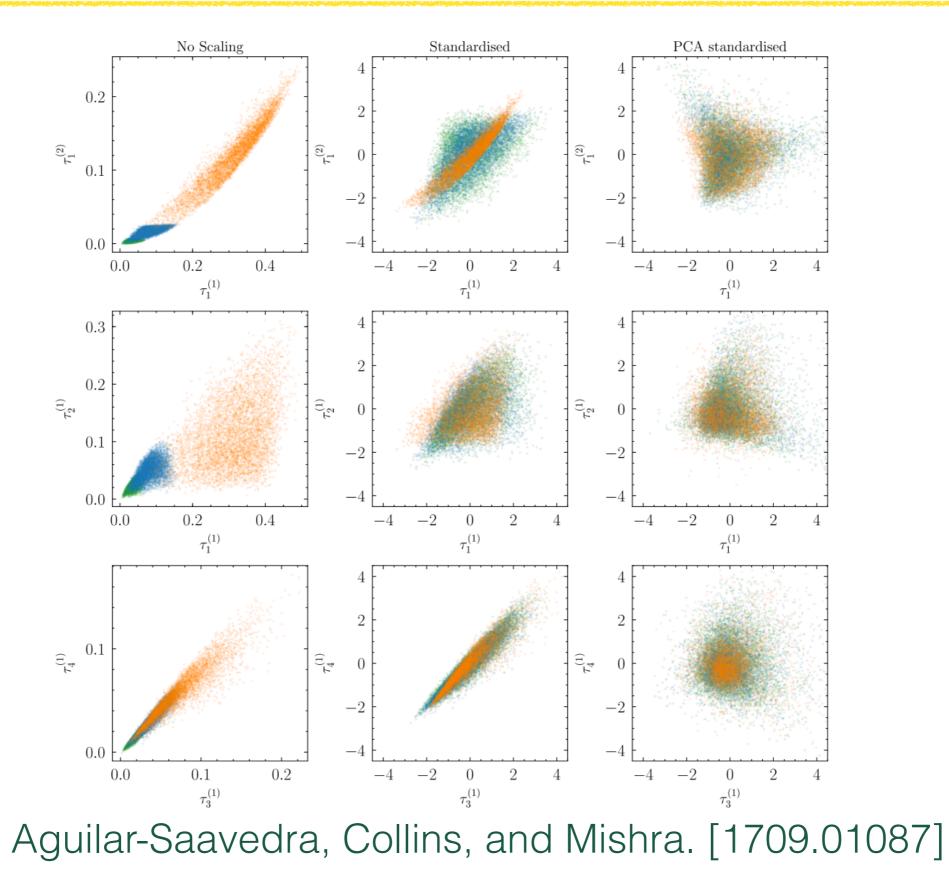
Metodiev, Nachman, and Thaler. [1708.02949]



Komiske, Metodiev, Nachman, and Schwartz. [1801.10158]

Alternative approach to decorrelation

Alternative approach to decorrelation



Bryan Ostdiek (University of Oregon)

Alternative approach to decorrelation

 $p_T > 1000 \text{ GeV}$ 10^{4} PCA1000_80 10^{3} 10^2 10^{1} 10^{4} Number of events / GeV PCA1000_200 10^{3} 10^{2} $\begin{array}{l}
 10^{1} \\
 10^{4}
 \end{array}$ PCA500_80 10^{3} 10^{2} 10^{1} 50100 200 150250300 Jet Mass / ${\rm GeV}$

Aguilar-Saavedra, Collins, and Mishra. [1709.01087]

Bryan Ostdiek (University of Oregon)

	Introduction and overview (20'+10')	Bryan Ostdiek
	One West (WH1W), Fermilab	10:00 - 10:30
	Disentangling Jet Categories at Colliders (20'+5')	Eric Metodiev
	One West (WH1W), Fermilab	10:35 - 11:00
11:00	JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics (20'+5')	Anders Andreassen
	One West (WH1W), Fermilab	11:05 - 11:30
	Lunch	
12:00		
	One West (WH1W), Fermilab	11:30 - 13:00
13:00	One West (WH1W), Fermilab CWoLa Hunting: Enhancing the Bump Hunt with Machine Learning (20'+5')	11:30 - 13:00 Jack Collins
13:00		
13:00	CWoLa Hunting: Enhancing the Bump Hunt with Machine Learning (20'+5')	Jack Collins
13:00	CWoLa Hunting: Enhancing the Bump Hunt with Machine Learning (20'+5') One West (WH1W), Fermilab	<i>Jack Collins</i> 13:00 - 13:25
13:00	CWoLa Hunting: Enhancing the Bump Hunt with Machine Learning (20'+5') One West (WH1W), Fermilab QCD or What: Deep autoencoder based searches for new physics (20'+5')	Jack Collins 13:00 - 13:25 Gregor Kasieczka
	CWoLa Hunting: Enhancing the Bump Hunt with Machine Learning (20'+5') One West (WH1W), Fermilab QCD or What: Deep autoencoder based searches for new physics (20'+5') One West (WH1W), Fermilab	Jack Collins 13:00 - 13:25 Gregor Kasieczka 13:30 - 13:55
	CWoLa Hunting: Enhancing the Bump Hunt with Machine Learning (20'+5') One West (WH1W), Fermilab QCD or What: Deep autoencoder based searches for new physics (20'+5') One West (WH1W), Fermilab Searching for New Physics with Autoencoders (20'+5')	Jack Collins 13:00 - 13:25 Gregor Kasieczka 13:30 - 13:55 Marco Farina

https://indico.cern.ch/event/745718/timetable/#20181116

Open questions, concrete & speculative

Marat's overview last year

- performance for multi-component classification?
 - does CWoLa even have a multi-component generalization?
- · how do the optimality arguments change at finite statistics?
- · can we propagate uncertainties on inputs through the network?
 - would this be useful?
- · can we invert any of these result to see what our models get wrong
- can we go even weaker?
 - e.g., Hopfield networks and generalizations
 - can solve certain classification tasks unsupervised
 - some use in astrophysics, nearly no collider proposals to date
- ...
- What can theorists do to help weak supervision get implemented in the experiments?
- Are there easier ways to de-correlate than adversarial training?
- If taggers get nearly identical ROC curves, but some de-correlate well, and others do not, can we learn physics from that?