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Talks from last year

Review weak supervision

Other systematics mitigation

Alternative approach to 
decorrelation
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Unlabeled dataLabeled data

Unsupervised LearningSupervised Learning

• Classification 
• Regression 
• etc

• Clustering 
• Anomaly detection 
• GAN 
• etc

Hybrid?
• Learning from label proportions 
• Classification without labels

Weak supervision

Learning overview
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Stolen from Kyle Cranmer

[1506.02169] 
[1612.05261] 
[1712.02350]

Information geometry

[1805.00013] 
[1805.00020] 
[1805.12244] 
[1808.00973]

Likelihood-free inference

Including uncertainties/
systematics in loss function 

[1806.04743] 
[1802.03537]
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Weak supervision
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Weak supervision
"Weakly Supervised Classification in High Energy 
Physics," Dery, Nachman, Rubbo, and Schwartzman. 
[1702.00414 ] 

“(Machine) Learning to Do More with Less," Cohen, 
Freytsis, and BO. [1706.09451] 

“Classification without labels: Learning from mixed 
samples in high energy physics," Metodiev, Nachman, 
and Thaler. [1708.02949] 

“Learning to Classify from Impure Samples," Komiske, 
Metodiev, Nachman, and Schwartz. [1801.10158]

LLP

CWoLa

https://inspirehep.net/record/1511880
https://inspirehep.net/record/1511880
https://inspirehep.net/record/1511880
http://arxiv.org/abs/arXiv:1702.00414
https://inspirehep.net/record/1608029
https://arxiv.org/abs/arXiv:1706.09451
https://inspirehep.net/record/1615464
https://inspirehep.net/record/1615464
https://inspirehep.net/record/1615464
https://inspirehep.net/record/1651455
http://arxiv.org/abs/arXiv:1801.10158
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Problem: (How) can we make a classifier without event-by-
event truth-level labels

Background Signal
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Group A
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Problem: (How) can we make a classifier without event-by-
event truth-level labels
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Problem: (How) can we make a classifier without event-by-
event truth-level labels
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Problem: (How) can we make a classifier without event-by-
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Problem: (How) can we make a classifier without event-by-
event truth-level labels

Group A

Group B

0.7 0.7 0.7 0.7 0.7

0.7 0.7 0.7 0.7 0.7

0.4 0.4 0.4 0.4 0.4

0.4 0.4 0.4 0.4 0.4

hA,i = yA h1,i + (1� yA) h0,i (1)

hB,i = yB h1,i + (1� yB) h0,i (2)

Make a histogram of the 
multi-dimensional data

Machine learning helps with: 
• Large dimensionality 
• Over-constrained (more 

groups) 
• Finite statistics

Invert
h0,i =

yA hB,i�yB hA,i

yA�yB

h1,i =
(1�yB)hA,i�(1�yA)hB,i

yA�yB
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`LLP =
X

batches

|hft,ii � hyp,ii|

Dataset B, f = 0.7
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L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, JHEP 1705, 145
(2017) doi:10.1007/JHEP05(2017)145 [arXiv:1702.00414 [hep-ph]]

Weak supervision - LLP



Bryan Ostdiek (University of Oregon)  11

`LLP =
X

batches

|hft,ii � hyp,ii|

L. M. Dery, B. Nachman, F. Rubbo and A. Schwartzman, JHEP 1705, 145
(2017) doi:10.1007/JHEP05(2017)145 [arXiv:1702.00414 [hep-ph]]

Weak supervision - LLP



Bryan Ostdiek (University of Oregon)  12

Weak supervision 

What if there are uncertainties on the ratio?

0.7 0.7 0.7 0.7 0.7
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0.6

0.6
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0.60.60.60.6

Cohen, Freytsis, BO [1706.09451]

Metodiev, Nachman, Thaler [1708.02949]

Label errors don’t affect classifier

Possible to do classification with 
arbitrary labels
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Theorem 1 Given mixed samples M1 and M2 defined in terms of pure samples
S and B with signal fractions f1 > f2, an optimal classifier trained to distinguish
M1 from M2 is also optimal for distinguishing S from B.

Metodiev, Nachman, and Thaler [arXiv:1708.02949] 

Weak supervision 
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Weak supervision 

Komiske, Metodiev, Nachman, 
and Schwartz. [1801.10158]

Metodiev, Nachman, and Thaler. 
[1708.02949]
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Aguilar-Saavedra, Collins, and Mishra. [1709.01087]



Bryan Ostdiek (University of Oregon)  16

Alternative approach to decorrelation

Aguilar-Saavedra, Collins, and Mishra. [1709.01087]
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https://indico.cern.ch/event/745718/timetable/#20181116
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• What can theorists do to help weak supervision get 
implemented in the experiments? 

• Are there easier ways to de-correlate than adversarial 
training? 

• If taggers get nearly identical ROC curves, but some 
de-correlate well, and others do not, can we learn 
physics from that? 

Marat’s overview last year


