

Recent results from MICE - implications for neutrino factory and muon collider schemes

Chris Rogers,
ISIS,
Rutherford Appleton Laboratory

Overview

- Ionisation Cooling role in Neutrino Factory and Muon Collider
 - LEMMA
 - MAP-MC
 - MERIT
- Results from MICE
- Viewpoint from other experiments

Muon Ionization Cooling Principle

- Muons lose longitudinal and transverse momentum through ionization energy loss in an absorber
 - Non-conservative system
 - Normalised amplitude decrease
- Muons regain only longitudinal momentum in RF cavities
 - Overall, transverse momentum and amplitude is reduced
- Multiple scattering degrades the cooling effect
 - Mitigate by tight focussing
 - Mitigate by choice of low-Z absorber material
- Challenge to maintain tight focussing and high acceptance

Muon Collider and Neutrino Factory

- Facility
 - High power protons
 - Target → pions
 - Capture → muons
 - Cooling
 - Rapid acceleration
 - Storage ring
- Rapid cooling → ionization cooling

R&D Programme

MERIT

- Demonstrated principle of liquid Mercury jet target
- MuCool Test Area
 - Demonstrated operation of RF cavities in strong B-fields
- EMMA
 - Showed rapid acceleration in nonscaling FFA
- MICE
 - Demonstrate ionization cooling principle
 - Increase inherent beam brightness
 → number of particles in the beam core
 - "Amplitude"

LEMMA

e⁺ Linac or Booster

- Facility
 - High power protons
 - Target → pions
 - Capture → muons
 - Cooling
 - Rapid acceleration
 - Storage ring
- Rapid cooling → ionization cooling

nology Facilities Council

Multiplex Energy Recovery Internal Target (MERIT)

- MERIT muon production concept (Yoshi Mori, KURNS)
- Extend vertical aperture
 - Splitting coils further
 - Modify pole-tip profile
 - Very large DA
- Accelerate to top energy and hold
 - Wedge shaped liquid Li target
 - Serpentine (fixed frequency) acceleration
- Yields very long beam lifetime
- (CW) muon yield significantly higher than MAP MC

Using as a Muon Collider

Scheme as follows

Summary of Cooling Requirements

- Energy loss goes with βγ
- Coulomb Scattering goes with 1/p
- Positrons behave quite differently to muons/protons

	Momentum [GeV/c]	βу	Transverse?	Longitudinal?
MAP Muon Collider	0.24	~2	Yes	Yes
MAP Neutrino Factory	0.24	~2	Yes	Maybe
LEMMA e+	45	88000	Yes	Yes
LEMMA μ	22	210	Yes	Yes
MERIT protons	1.5	1.5	Yes	Yes
MERIT μ	0.2-0.5	2-5	Yes	Yes

Muon Ionization Cooling Experiment

Measure muon position and momentum upstream

Measure muon position and momentum downstream

Beam

Cool the muon beam using LiH, LH₂, or polyethylene wedge absorbers

- Spectrometer solenoids upstream and downstream
 - 400 mm diameter bore, 5 coil assembly
 - Provide uniform 2-4 T solenoid field for detector systems
 - Match coils enable choice of beam focus
- Focus coil module provides final focus on absorber
 - Dual coil assembly possible to flip polarity

Absorbers

- 65 mm thick lithium hydride absorber
- 350 mm thick liquid hydrogen absorber
 - Contained in two pairs of 150-180 micron thick Al windows
- 45° polythene wedge absorber for longitudinal emittance studies

Scintillating Fibre trackers

- Tracks form a helix in spectrometer solenoids
- Position of particles measured by 5 stations of scintillating fibres
- Reconstruct helix in two phases
 - Pattern recognition to reject noise
 - Kalman filter to get optimal trajectory
- Yields momentum and position of particles at reference plane
- A scintillating fibre tracker for MICE, NIM A 659, 2011
- The reconstruction software for the MICE scintillating fibre trackers, J.Inst.11, 2016

Time-of-Flight, Ckov and Calorimetry

- High precision Time-of-Flight detectors
 - Comparison of time-of-Flight with momentum enables rejection of impurities
- Threshold Cerenkov detectors provide rejection of impurities near the relativistic limit
- KLOE Light and Electron Muon Ranger provide calorimetry and rejection of decay electrons in downstream region
- Electron-Muon Ranger (EMR) Performance in the MICE Muon Beam, JINST 10 P12012 (2015)

Material physics processes

- Energy loss and multiple Coulomb scattering underlie ionization cooling emittance decrease
- Precision measurement of multiple coulomb scattering
 - See next talk
- Validation of energy loss model

Change in Amplitude Across Absorber

- No absorber → decrease in number of core muons
- With absorber → increase in number of core muons
 - Cooling signal

Ratio of core densities

- R_{amp} is ratio of CDF
- Core density increase for LH2 and LiH absorber → cooling
- More cooling for higher emittances

Summary of Cooling Requirements

- Energy loss goes with βγ
- Coulomb Scattering goes with 1/p
- Positrons behave quite differently to muons/protons

	Momentum [GeV/c]	βγ	Transverse?	Longitudinal?
MAP Muon Collider	0.24	~2	Yes	Yes
MAP Neutrino Factory	0.24	~2	Yes	Maybe
LEMMA e+	45	88000	Yes	Yes
LEMMA μ	22	210	Yes	Yes
MERIT protons	1.5	1.5	Yes	Yes
MERIT µ	0.2-0.5	2-5	Yes	Yes
MICE	0.14-0.24	1.4-2	Yes	Maybe

Summary of Cooling Requirements

- Energy loss goes with βγ
- Coulomb Scattering goes with 1/p
- Positrons behave quite differently to muons/protons

	Momentum [GeV/c]	βу	Transverse?	Longitudinal?
MAP Muon Collider	0.24	~2	Yes	Yes
MAP Neutrino Factory	0.24	~2	Yes	Maybe
LEMMA e+	45	88000	Yes	Yes
LEMMA μ	22	210	Yes	Yes
MERIT protons	1.5	1.5	Yes	Yes
MERIT μ	0.2-0.5	2-5	Yes	Yes
MICE	0.14-0.24	1.4-2	Yes	Maybe

What other cooling experiments exist/can be foreseen?

Energy Recovery Internal Target (ERIT)

- KURNS ERIT ring (Mori et al)
- Study of neutron production for cancer therapy

Mean Radius [m]	2.35
Number of Sectors	8
Max B Field [T]	0.9
Field Index	1.92
FD Ratio	3
Horizontal Tune	1.74
Vertical Tune	2.22
Horizontal Acceptance [microns]	7000
Vertical Acceptance [microns]	3000
RF Voltage [kV]	200
Harmonic Number	6
RF Frequency [MHz]	3.01

Energy Recovery Internal Target (ERIT)

- Excellent acceptance
- Beam survival ~ several 100 turns
- Limited in the end by vertical aperture
- Demonstrates that amplification using energy recovery is possible
- But does **not** demonstrate **stability**
- Does not demonstrate 6D cooling

PoP-MERIT (Okita et al)

- Increased vertical acceptance in ERIT by modified pole tip
 - Status of Development of the ring
 - ♦ Construction work was finished last summer.

 - Optimization of shape of field clamp for COD correction was carried out.
 - Beam study is carrying out.

z [cm]

PoP-MERIT (Okita et al)

Results from FFA

- Result of experiment
 - ♦ Beam loss was happen by turning on the RF.
 - ♦ It is estimated that beam loss occurred at the horizontal aperture by acceleration and deceleration.

Missing Physics

- What is missing from the current state-of-the-art?
 - 1. Cooling in the intensity limit (MAP MC)
 - 2. Beam stability with internal target concept (MERIT, LEMMA)
 - 3. Higher energies (LEMMA)
 - 4. Electrons/positrons (LEMMA)
 - 5. High power internal target (MERIT, LEMMA)
- How can we address this?
 - Small test ring like PoP-MERIT (1, 2, ~5)
 - Test in existing electron beams (3, 4, 5)
 - Test in existing proton beams (5)
- Potential real world applications
 - Rare isotope production
 - Secondary particle production (e.g. soft neutrons)

To conclude

- Muon ionisation cooling is an essential part of the protonbased Neutrino Factory or Muon Collider
- Muon ionisation cooling is an essential part of LEMMA
- A small test ring would provide an ideal basis for investigating long-term behaviour of ionisation cooling
 - PoP-MERIT may help!
- References
 - Y.Mori et al., "Intense Negative Muon Facility with MERIT ring for Nuclear Transmutation"; Proc, 14th Conf. On Muon Spin Rotation, Relaxation and Resonanc(μSR2017), JPS Conf. Proc. 21, 011063(2018). https://journals.jps.jp/doi/book/10.7566/musr2017
 - Intense Muon Source with Energy Recovery Internal Target (ERIT) Ring Using Deuterium Gas Target, Yoshiharu MORI, Hidefumi OKITA, Yoshihiro ISHI, Yujiro YONEMURA and Hidehiko ARIMA pp.1-9, Vol.77, No.1, September 28, 2017 http://kenkyo.eng.kyushu-u.ac.jp/memoirs-eng/top.php

